
FOURIER-MUKAI TRANSFORMS OF LINE BUNDLES

ON DERIVED EQUIVALENT ABELIAN VARIETIES

MARTIN G. GULBRANDSEN

Abstract. We study the Fourier-Mukai functor D(Y ) → D(X)
induced by the universal family on a �ne moduli space Y for simple
semihomogeneous vector bundles on an abelian variety X. The
main result is that the Fourier-Mukai transform of a very negative
line bundle on Y is ample if and only if the bundles parametrized
by Y are nef.
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1. Introduction

In connection with their work on generic vanishing and related topics
[9], Pareschi and Popa raise the following question: Let Y be a �ne
moduli space of stable sheaves on a smooth projective variety X, and
�x a universal family E on X × Y . Let L be an ample line bundle on
Y , let d = dimY and put

(1.1) Gn = Rdp1∗
(
p∗2(L

−n)⊗ E
)

where pi denote the projections from X×Y . Under suitable hypotheses
(for instance as in Example 2.4), the sheaf Gn is locally free for n
su�ciently large; it is the Fourier-Mukai transform of L −n with kernel
E . What can be said about these bundles? In particular, are they
stable, and are they ample?
In this text we work out the following special case:
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Theorem 1.1. Let X be an abelian variety and Y a �ne moduli space
of simple semihomogeneous bundles on X. Fix an ample line bundle
L on Y and de�ne Gn by (1.1). Then, for su�ciently large n, the
following holds:

(1) Gn is a simple semihomogeneous bundle. In particular it is sta-
ble.

(2) Gn is ample if and only if the bundles E |X×{y} parametrized by
Y are nef.

The de�nition of semihomogeneous bundles is recalled in Section 2.
Our viewpoint is that their moduli spaces are of the simplest possible
form: In the mostly expository sections 3 and 4 we recall results of
Mukai and Orlov showing that any moduli space Y of semihomogeneous
bundles on X is again an abelian variety of the same dimension as
X, and the Fourier-Mukai functor associated to a universal family is
an equivalence D(X) ∼= D(Y ) of derived categories. Conversely, any
Fourier-Mukai equivalence between abelian varieties, with locally free
kernel, is of this form: The Fourier-Mukai kernel gives Y the structure
of a moduli space for semihomogeneous vector bundles on X.
Any line bundle is semihomogeneous, and the prototype for a moduli

space of semihomogeneous sheaves is the dual abelian variety Y = X̂,
equipped with the normalized Poincaré bundle P. In this case, the
above theorem is well known; in fact the bundle Gn is stable and ample
already for n = 1. This can be deduced from a result of Mukai [4],
saying that the pullback of G1 under the canonical isogeny

φL : X̂ → X, ξ 7→ T ∗ξ (L )⊗L ∨

(viewing X as the dual of X̂), is just

H0(X̂,L )⊗k L ,

i.e. a direct sum of a suitable number of copies of L itself.
One motivation for studying bundles of the form Gn is the rôle they

play in Hacon's and Pareschi-Popa's approach to generic vanishing:
Returning to the general case, with Y an arbitrary moduli space of
sheaves on a smooth projective variety X, we say that a sheaf F on
X satis�es Generic Vanishing with respect to the universal family E
if, for each i, the closed set{

y ∈ Y H i(X,F ⊗ Ey) 6= 0
}

has codimension at least i. A criterion of Pareschi and Popa, generaliz-
ing work of Hacon, says that the bundle Gn can be used to test generic
vanishing. Namely, F satis�es generic vanishing if and only if

H i(X,F ⊗ Gn) = 0
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for all i > 0. Here, it is enough to test with a bundle Gn associated to a
�xed ample line bundle L and a �xed, but large, integer n. This crite-
rion, together with Mukai's description of Gn in the case of an abelian
variety and its dual, has been used by Hacon [?] and Pareschi-Popa
[9] to generalize of the Green-Lazarsfeld Generic Vanishing theorem [9,
Theorem A]. The upshot is that a good understanding of the bundles
Gn, and in particular their positivity properties, is required to make
the Generic Vanishing criterion e�ective.
The �rst part of the theorem (with weaker hypotheses) is obtained

as Corollary 4.2, as an immediate consequence of the results of Mukai
and Orlov. Theorem 7.2 is a more precise version of the second part:
We prove that the bundle Gn always satis�es an index theorem, and its
index can be computed. By demanding its index to be zero, we arrive
at the criterion for ampleness, stated as Corollary 7.3.
This project was initiated during the summer school Pragmatic 2007

in Catania, Italy. I am most grateful to Mihnea Popa and Giuseppe
Pareschi, not only for their lectures, but also for putting an immense
e�ort into helping each participant identify and develop concrete and
accessible problems.

2. Terminology

Throughout, let X denote an abelian variety of dimension g over an
algebraically closed �eld k of characteristic zero. We write X̂ for the
dual abelian variety. The normalized Poincaré line bundle on X × X̂
is denoted P.
For each point x ∈ X, we write Tx : X → X for translation by x.

A line bundle is homogeneous if it is invariant under all translations.
Via the Poincaré bundle, points in X̂ correspond to homogeneous line
bundles on X and vice versa. We denote points in X̂ by Greek letters
ξ, ζ, . . . , and we use the same symbols for the corresponding homoge-
neous line bundles on X.
If L is an arbitrary line bundle on X, we write K(L ) ⊆ X for the

subgroup of points x ∈ X satisfying T ∗x (L ) ∼= L .
We use the words vector bundle and line bundle as synonyms for

locally free sheaf and invertible sheaf. By stability, we mean Gieseker-
stability with respect to any �xed polarization, the choice of which will
not matter to us.

De�nition 2.1 (Mukai [3, 5]). A coherent sheaf E on X is semihomo-
geneous if the locus

Γ(E ) = {(x, ξ) ∈ X × X̂ T ∗x (E ) ∼= E ⊗ ξ}
has dimension g.
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If E locally free, then it is semihomogeneous if and only if the fol-
lowing condition holds: For each x ∈ X, there is a ξ ∈ X̂, such that

T ∗x (E ) ∼= E ⊗ ξ.
The equivalence with the de�nition given above follows from noting
that the kernel of the �rst projection p1 : Γ(E ) → X is �nite: In fact,

its kernel is contained in the group of r-torsion points X̂r, where r is
the rank of E .
Next we set up notation for the Fourier-Mukai transform. We write

D(X) for the bounded derived category of a variety X, equipped with
the autofunctors C 7→ C [i] that shift a complex C the speci�ed number
i steps to the left. We view a sheaf as a complex concentrated in degree
zero; thus D(X) contains the category of coherent sheaves. Let X and
Y be two varieties (both will be abelian varieties in our context), and
let

X
p1←− X × Y p2−→ Y

denote the projections. To any coherent sheaf E (or, more generally,
any bounded complex) on the product X × Y , we associate a pair of
functors between the derived categories of X and Y :

De�nition 2.2. The Fourier-Mukai functors with kernel E are the
two functors

ΦE : D(X)→ D(Y ), ΦE (−) = Rp2∗(p
∗
1(−)

L
⊗ E )

ΨE : D(Y )→ D(X), ΨE (−) = Rp1∗(p
∗
2(−)

L
⊗ E ).

We write Φi
E (−) and Ψi

E (−) for the i'th cohomology sheaf of ΦE (−)
and ΨE (−).

De�nition 2.3. Given a triple (X, Y,E ) as above and a coherent sheaf
F on X, we say that

(1) F satis�es the index theorem (IT) with respect to E if there
exists an integer i0 such that

H i(X,F ⊗ E |X×{y}) = 0 for all i 6= i0 and all y ∈ Y .
(2) F satis�es the weak index theorem (WIT) with respect to E if

there exists an integer i0 such that

Φi
E (F ) = 0 for all i 6= i0.

Similarly, the vanishing of H i(Y, (−)⊗ E |{x}×Y ) and Ψi
E (−) de�nes

the properties IT and WIT for sheaves on X.
Suppose that the kernel E of the Fourier-Mukai functor is a Y -�at

coherent sheaf. Then the base change theorem in cohomology shows
that IT implies WIT. The integer i0 in the de�nition will be referred
to as the E -index of F , denoted iE (F ).
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Example 2.4. Let X and Y be projective varieties, and let E be a
vector bundle on X × Y . Assume that Y has a dualizing sheaf ωY . If
L is an ample line bundle on Y and n is su�ciently large, then L −n

satis�es IT with respect to E , and its E -index is d = dimY . This
follows from Serre's theorems: We have

H i(Y,L −n ⊗ E |{x}×Y ) ∼= Hd−i(Y,L n ⊗ E |∨{x}×Y ⊗ ωY )
∨

and the latter vanishes for n su�ciently large if i 6= d. The bound on
n can be made independent of x, by using that the vanishing of the
cohomology vector spaces above is an open condition on x ∈ X.

De�nition 2.5. Let F be a coherent sheaf on X satisfying WIT with
respect to E , and let i0 denote its E -index. The Fourier-Mukai trans-
form of F with respect to E is the coherent sheaf Φi0

E (F ).

When we do not specify the kernel explicitly, we will mean the
Fourier-Mukai functor with respect to the Poincaré line bundle on
X × X̂. Thus, in this case, we will write Φ and Ψ with no subscript,
and, if F satis�es WIT, its index (i.e. its P-index) is denoted i(F ).
In this case we also use the notation

F̂ = Φi(F )(F )

for the Fourier-Mukai transform.

3. Moduli spaces of semihomogeneous bundles

LetM be the (quasi-projective) moduli space of stable vector bundles
on X. The following results are due to Mukai [3]:

(1) Every semihomogeneous bundle is semistable, and every simple
semihomogeneous bundle is stable, with respect to any polar-
ization.

(2) For every simple (in particular, every stable) vector bundle E
on X, we have

dimk Ext1
X(E ,E ) ≥ g

with equality if and only if E is semihomogeneous.

By (1), simple semihomogeneous bundles are parametrized by a certain
locus inM . Since the tangent space to any bundle E ∈M is canonically
isomorphic to Ext1

X(E ,E ), point (2) gives a geometric characterization
of this locus, as the points in M with tangent space of minimal dimen-
sion g. For these results we refer to the very readable original paper of
Mukai. Here we essentially only make a remark:

Proposition 3.1. Let E be a stable bundle, and let Y ⊆ M be the
connected component containing E . Then the following are equivalent.

(1) E is semihomogeneous
(2) The tangent space to Y at E has dimension g.
(3) Y is an abelian variety isogeneous to X.
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Proof. The equivalence of (1) and (2) is Mukai's theorem. Furthermore,
it is obvious that (3) implies (2). We next show that (1) implies (3).
Let Q be the determinant of E . We can form a commutative diagram

X̂
τ

- Y

X̂

δ?
r bX -

where the twisting map τ sends a homogeneous line bundle ξ ∈ X̂ to
E ⊗ ξ and the determinant map δ sends a sheaf F ∈ Y to the homo-
geneous line bundle det(F )⊗Q−1. The composition is multiplication
by r, since det(E ⊗ ξ) ∼= Q ⊗ ξr.
Since the composed map r bX is �nite, so is τ , and hence its image

is g-dimensional. The bundles parametrized by the image of τ are
clearly semihomogeneous, hence, using the equivalence (1) ⇐⇒ (2),
we conclude that Y is nonsingular and g-dimensional at all points of
τ(X̂). Since Y is connected this implies that τ(X̂) = Y , and so Y is a
nonsingular g-dimensional variety.
Now let Y (Q) ⊂ Y be the subscheme δ−1(0), i.e. the locus in Y

parametrizing bundles with �xed determinant Q. Then there is a
Cartesian diagram

X̂ × Y (Q) - Y

X̂

?
r bX - X̂

δ?

where the left map is projection onto the �rst factor and the top map
sends a pair (ξ,F ) to the tensor product F ⊗ ξ. In particular, the
determinant map δ is locally trivial in the étale topology. Since Y is
nonsingular, this implies that δ is étale. A variety admitting an étale
map to an abelian variety is itself an abelian variety [6, Section 18], so
we are done. �

4. Derived equivalent abelian varieties as moduli spaces

Let X and Y be abelian varieties, and suppose there exists a derived
equivalence

D(X)
∼→ D(Y ).

By results of Orlov [8], any such equivalence is a Fourier-Mukai trans-
form ΦE , with kernel a sheaf E (i.e. a complex concentrated in one
degree, although not necessarily degree zero) on the product X × Y .
Moreover, this sheaf is semihomogeneous. The semihomogeneity is per-
haps only almost explicit in Orlov's work � so here is a short account:
Associated to E , Orlov constructs an isomorphism

f : X × X̂ ∼→ Y × Ŷ ,
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which on points is given by

f(x, ξ) = (y, ζ)

m
T ∗(x,y)(E ) ∼= E ⊗ (p∗1(ξ

−1)⊗ p∗2(ζ)).

This says that a quadruple (x, ξ, y, ζ) belongs to the graph of f if and
only if (x, y, ξ−1, ζ) belongs to Γ(E ), with notation as in Section 2.
Since the graph of f is 2g-dimensional, so is Γ(E ), which shows that E
is semihomogeneous.
For simplicity, we will assume that E is also locally free.

Proposition 4.1. Let X and Y be abelian varieties and E a vector
bundle on their product X × Y . Then the following are equivalent.

(1) The Fourier-Mukai transform ΦE : D(X) → D(Y ) with kernel
E is an equivalence.

(2) The variety Y , equipped with the family E , is a �ne moduli space
of simple semihomogeneous vector bundles on X.

Proof. By a criterion of Bondal and Orlov [1, Corollary 7.5], the functor
ΦE is fully faithful if and only if

Hom(Ey,Ey) = k for all y(4.1)

Exti(Ey,Ey′) = 0 for all i and y 6= y′,(4.2)

where Ey = E |X×{y}. We also need the fact that, by the triviality of
the canonical bundles on X and Y , the functor ΦE is fully faithful if
and only if it is an equivalence [1, Corollary 7.8].
First assume that Y , equipped with E , is a moduli space of simple

semihomogeneous vector bundles on X. Then (4.1) is satis�ed since
the �bres Ey are simple, and (4.2) follows from Mukai's work on ho-
mogeneous and semihomogeneous vector bundles � see Lemma 4.8 in
Orlov's paper [8]. So ΦE is fully faithful and hence an equivalence.
Conversely, assume ΦE is an equivalence. Since (4.1) is satis�ed,

the �bres Ey are simple, and they are semihomogeneous since E is a
semihomogeneous bundle on X × Y . Since E is locally free, it is �at
over Y , and so induces a morphism

f : Y →M

to the moduli spaceM of stable sheaves on X. By Proposition 3.1, this
map f hits a component M ′ of M which is an abelian g-dimensional
variety. Since (4.2) is satis�ed for i = 0, all distinct �bres Ey and Ey′
are non isomorphic, which says that f has degree 1. Thus f is an
isomorphism, being a degree 1 map between abelian varieties of the
same dimension. �

Corollary 4.2. Let Y be a �ne moduli space for simple semihomo-
geneous vector bundles on X, with a �xed universal family E . Let
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L be a line bundle on Y satisfying IT with respect to E . Then the
Fourier-Mukai transform G of L with respect to E is a simple semi-
homogeneous vector bundle on X. In particular it is stable.

Proof. By the proposition, the functor ΦE is an equivalence of cate-
gories, which implies that ΨE is an equivalence also [1, Remark 7.7].
Thus

ExtiY (L ,L ) ∼= ExtiX(G ,G )

for all i. In particular, for i = 0 we get that G is simple, and for i = 1
we get dim Ext1

X(G ,G ) = g, which implies G is semihomogeneous,
by Proposition 3.1. Finally, we apply Mukai's result, quoted in the
previous section, to conclude that G is stable. �

The �rst part of Theorem 1.1 follows, since the very negative line
bundle L −n considered there satis�es IT, by Example 2.4.

5. Index theorems

Recall that a line bundle on an abelian variety is degenerate if its Eu-
ler characteristic is zero; otherwise it is nondegenerate. By Mumford's
vanishing theorem [6, Section 16], every nondegenerate line bundle L
satis�es IT (with respect to the Poincaré bundle). In this section we
show that degenerate line bundles satisfy WIT. This is probably well
known, but I do not know of a suitable reference.
The starting point is the following construction by Kempf [7]: Let

L be a degenerate line bundle on X. Let Y ⊆ X be the identity
component of K(L ), with reduced structure, and let

π : X → X/Y

be the quotient. Then there exist a nondegenerate line bundle M on
X/Y and a homogeneous line bundle ξ ∈ X̂ such that

(5.1) L ∼= π∗(M )⊗ ξ.

Proposition 5.1. Let L be a degenerate line bundle, and write L =
π∗(M ) ⊗ ξ with M nondegenerate, as above. Then L satis�es WIT
with index

i(L ) = dimK(L ) + i(M )

and its Fourier-Mukai transform is

L̂ ∼= T ∗ξ (π̂∗(M̂ )).

Remark 5.2. Note that, since π̂ is an embedding, the expression

π̂∗(M̂ ) above simply means M̂ considered as a torsion sheaf on X̂.

Proof. For any homogeneous line bundle ξ, there is a natural isomor-
phism [4]

Φ((−)⊗ ξ) ∼= T ∗ξ (Φ(−)).
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Furthermore, for an arbitrary homomorphism φ : X → Z of abelian
varieties, there is an isomorphism [10, Section 11.3]

Φ ◦ Lφ∗[d] ∼= Rφ̂∗ ◦ Φ

where d = dimX − dimZ. Note that Φ on the left hand side is the
Fourier-Mukai functor with kernel the Poincaré bundle on X × X̂,
whereas the same symbol on the right hand side is the Fourier-Mukai
functor with kernel the Poincaré bundle on Z × Ẑ.
Since π is �at and π̂ �nite, we have Lπ∗ = π∗ and Rπ̂∗ = π̂∗. Thus

we get, for every integer i,

Φi(π∗(M )⊗ ξ) ∼= T ∗ξ (Φi(π∗(M )))

∼= T ∗ξ (π̂∗(Φ
i−d(M ))),

where d = dimY , which is also the dimension of K(L ). Since M
is nondegenerate, it satis�es IT with some index i(M ). The claim
follows. �

Corollary 5.3. Every line bundle L satis�es WIT. The index of a
line bundle satis�es

(1) i(L ∨) = g + dimK(L )− i(L ),

(2) i(L ⊗ ξ) = i(L ) for all ξ ∈ X̂,
(3) i(L n) = i(L ) for all n > 0.

Proof. When L is nondegenerate, these are standard facts. Other-
wise, write L as π∗(M ) ⊗ ξ as before, and apply the nondegenerate
case to M . The claims then follow from the formula for i(L ) in the
proposition, since dimK(L ) is invariant under dualizing, twisting with
homogeneous line bundles and positive tensor powers. �

As a further application of Proposition 5.1, we give a characterization
of nef line bundles on abelian varieties.

Corollary 5.4. The following are equivalent conditions on a line bun-
dle L .

(1) L is nef
(2) i(L ) = dimK(L )
(3) There exist an abelian subvariety Y ⊆ X and an ample line

bundle M on X/Y such that

L ∼= π∗(M )⊗ ξ

where π : X → X/Y is the quotient and ξ ∈ X̂ is a homogeneous
line bundle.

Remark 5.5. In particular, on a simple abelian variety, a nef line
bundle is either ample or algebraically equivalent to OX .
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Proof. By the results of Kempf, we may write an arbitrary line bundle
L as in (3), with Y the identity component of K(L ) and M nonde-
generate, but not necessarily ample. Let (3') be the condition that M
is ample, for this particular choice of Y . Clearly (3') implies (3), and
(3) implies (1).
Condition (1) implies (3'): If π∗(M ) ⊗ ξ is nef, then also π∗(M ) is

nef. But then M was nef to begin with [2, Example 1.4.4]. Since M
is also nondegenerate, it is ample [2, Corollary 1.5.18].
Conditions (2) and (3') are equivalent: By Proposition 5.1, condition

(2) holds if and only if M has index zero. But a nondegenerate line
bundle has index zero if and only if it is ample. �

6. Semihomogeneous vector bundles

Let E be a simple semihomogeneous vector bundle on X. Recall the
following:

(1) There are an isogeny f : Y → X and a line bundle L on Y
such that f ∗(E ) ∼= L ⊕r.

(2) There are an isogeny f : Y → X and a line bundle L on Y
such that E ∼= f∗(L ).

In fact, among simple vector bundles, the semihomogeneous ones are
characterized by either of these two properties [3]. In this section we
will use these facts to reduce many questions about E to the corre-
sponding questions about its determinant line bundle Q.
The notion of degeneracy can be extended plainly from line bundles

to simple semihomogeneous vector bundles:

De�nition 6.1. A simple semihomogeneous vector bundle E is degen-
erate if its Euler characteristic χ(E ) is zero. Otherwise it is nondegen-
erate.

Proposition 6.2. Let E be a simple semihomogeneous vector bundle
on X, with determinant line bundle Q.

(1) E is nondegenerate if and only if Q is nondegenerate.
(2) E is ample if and only if Q is ample.
(3) E is nef if and only if Q is nef.

Proof. Part (1) follows from Mukai's formula [3]

χ(E ) = χ(Q)/rg−1

for the Euler characteristic, where r is the rank of E .
To prove (2) and (3), choose an isogeny f : Y → X such that f ∗(E ) ∼=

L ⊕r for a line bundle L on Y . Then f ∗(Q) ∼= L r. Since f is a �nite
map, a vector bundle on X is ample (nef) if and only if its pullback to
Y is. Thus we have

E ample (nef) ⇐⇒ L ⊕r ample (nef)

Q ample (nef) ⇐⇒ L r ample (nef)
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and the two statements on the right are both equivalent to the ample-
ness (nefness) of L . �

Proposition 6.3. Let E be a simple semihomogeneous vector bundle.
Then E satis�es WIT, and its index equals the index of its determinant
line bundle. If E is nondegenerate, then it satis�es IT.

Proof. Let
f : Y → X

be an isogeny such that f∗(L ) ∼= E for some line bundle L on Y .
Being a line bundle, L satis�es WIT by Corollary 5.3. Furthermore
we have [4, Section 3]

Φi(f∗(L )) ∼= f̂
∗

(Φi(L )),

which implies that E satis�es WIT, and its index equals the index of
L .
Next we show that the index of L equals the index of the determi-

nant Q of E . Firstly, we have [3, Lemma 6.21]

(6.1) f ∗(Q) ∼ L d (algebraic equivalence)

where d is the degree of f . By Corollary 5.3, it follows that L and
f ∗(Q) have the same index. Moreover [4, Section 3], there are isomor-
phisms

Φi(f ∗(Q)) ∼= f̂∗(Φ
i(Q))

for all i, so f ∗(Q) has the same index as Q. This proves the �rst part.

Since the dual map f̂ is again an isogeny, we have that every ζ ∈ Ŷ
is a pullback f ∗(ξ) of some element ξ ∈ X̂. By the projection formula,

H i(Y,L ⊗ ζ) ∼= H i(X, f∗(L ⊗ ζ)) ∼= H i(X,E ⊗ ξ).
Thus L satis�es IT if and only if E does. But, if E is nondegenerate,
then so is Q by Proposition 6.2, and then (6.1) shows that

dgχ(L ) = χ(L d) = dχ(Q) 6= 0,

so L is nondegenerate also. Thus L satis�es IT. By what we just
said, this proves that E satis�es IT. �

7. Fourier-Mukai transforms of negative line bundles

Lemma 7.1. Let Y be a �ne moduli space of simple semihomogeneous
vector bundles on X, and let E be a �xed universal family on X × Y .

(1) There exists an isogeny f : X̂ → Y , that sends an element ξ ∈
X̂ to the bundle E |X×{0} ⊗ ξ.

(2) For every i, the sheaf Rip2∗(E ) is zero if and only if Φi(E |X×{0})
is zero.
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Proof. The bundle
P ⊗ p∗1(E |X×{0})

on X × X̂, considered as a family over X̂ of simple semihomogeneous
bundles, induces a map f : X̂ → Y . This is the map required in the
�rst part.
Moreover, by the universal property of Poincaré bundle, there exists

a line bundle L on X̂ such that

(1X × f)∗(E ) ∼= p∗2(L )⊗P ⊗ p∗1(E |X×{0}).
Hence, using �at base change for higher push forward and the projec-
tion formula, we get

f ∗(Rip2∗(E )) ∼= Rip2∗((1X × f)∗(E ))

∼= Rip2∗(p
∗
2(L )⊗P ⊗ p∗1(E |X×{0}))

∼= L ⊗Rip2∗(p
∗
1(E |X×{0})⊗P)

= L ⊗ Φi(E |X×{0}).
The second part of the lemma follows. �

Theorem 7.2. Let Y be a �ne moduli space of simple semihomogeneous
vector bundles on X, and let E be a �xed universal family on X × Y .
Also let L be an ample line bundle on Y . There exists an integer n0

such that for all n ≥ n0,

(1) the line bundle L −n satis�es the index theorem with respect to
E , and its index is g;

(2) the Fourier-Mukai transform Gn = Ψg
E (L −n) with respect to E

is nondegenerate and its index is

i(Gn) = i(Q)− dimK(Q)

where Q is the determinant line bundle of any of the bundles
E |X×{y} parametrized by Y .

Proof. The �rst part was established in Example 2.4. For the second
part, we make use of the Fourier-Mukai equivalence induced by E . As
L −n has index g, we have

(7.1) ΨE (L −n)[g] ∼= Gn

(where, as usual, the bundle on the right hand side is considered as
a complex concentrated in degree zero). Furthermore, by Proposition
6.3, the semihomogeneous vector bundle E |∨X×{0} satis�es WIT with

index equal to the index of Q∨, which is

i0 = g + dimK(Q)− i(Q)

by Corollary 5.3. Now apply Lemma 7.1 to E ∨ to conclude that
Φi

E∨(OX) = Rip2∗(E ∨) vanishes for all i except i0. In other words,

(7.2) ΦE∨(OX) ∼= F [−i0]
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for some coherent sheaf F . Since ΦE∨(−) and ΨE (−)[g] are quasi-
inverse functors [1, Proposition 5.9], the isomorphisms (7.1) and (7.2)
give

Hp(X,Gn) ∼= ExtpX(OX ,Gn)
∼= HomD(X)(OX ,Gn[p])

∼= HomD(Y )(ΦE∨(OX),L −n[p])

∼= HomD(Y )(F [−i0],L −n[p])

∼= Extp+i0Y (F ,L −n)

∼= Hg−p−i0(Y,F ⊗L n)
∨
,

using Serre duality in the last step. If n is su�ciently large, the coho-
mology group in the last line vanishes if and only if p di�ers from

g − i0 = i(Q)− dimK(Q).

Thus we have proved that Hp(X,Gn) is nonzero if and only if p has this
value. On the one hand, this shows that if Gn satis�es IT, then this p
is its index. On the other hand, it also shows that Gn is nondegenerate,
so it satis�es IT by Proposition 6.3, and we are done. �

The second part of Theorem 1.1 follows:

Corollary 7.3. The vector bundle Gn is ample for n su�ciently large if
and only if the bundles E |X×{y} parametrized by Y are nef (equivalently,

have nef determinant).

Proof. A line bundle is ample if and only if its is nondegenerate and
has index 0. The same holds for any simple semihomogeneous vector
bundle, since both conditions �ample� and �nondegenerate of index 0�
can be tested on the determinant line bundle, by Proposition 6.2 and
Proposition 6.3. Hence, by the theorem, the simple semihomogeneous
vector bundle Gn is ample if and only if i(Q) = dimK(Q), where
Q is the determinant of E |X×{y}. By Corollary 5.4 this is equivalent

to Q being nef, which again is equivalent to nefness of E |X×{y}, by
Proposition 6.2. �

References

1. D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Math-
ematical Monographs, The Clarendon Press Oxford University Press, Oxford,
2006.

2. R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics,
vol. 48, Springer-Verlag, Berlin, 2004, Classical setting: line bundles and linear
series.

3. S. Mukai, Semi-homogeneous vector bundles on an Abelian variety, J. Math.
Kyoto Univ. 18 (1978), no. 2, 239�272.



14 MARTIN G. GULBRANDSEN

4. , Duality between D(X) and D(X̂) with its application to Picard sheaves,
Nagoya Math. J. 81 (1981), 153�175.

5. , Abelian variety and spin representation, University of Warwick
preprint, 1998.

6. D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Stud-
ies in Mathematics, No. 5, Published for the Tata Institute of Fundamental
Research, Bombay, 1970.

7. , Varieties de�ned by quadratic equations, with an appendix by G.

Kempf, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969),
Edizioni Cremonese, Rome, 1970, pp. 29�100.

8. D. O. Orlov, Derived categories of coherent sheaves on abelian varieties and

equivalences between them, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 3,
131�158.

9. M. Pareschi, G. and Popa, GV-sheaves, Fourier-Mukai transform, and generic

vanishing, arXiv:math/0608127v2 [math.AG].
10. A. Polishchuk, Abelian varieties, theta functions and the Fourier transform,

Cambridge Tracts in Mathematics, vol. 153, Cambridge University Press, Cam-
bridge, 2003.

Royal Institute of Technology, Stockholm, Sweden

E-mail address: gulbr@kth.se


