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CHAPTER 1

Preview: Group varieties and actions

A group variety is the algebro-geometric analogue of a Lie group.
Thus a group variety is a (not necessarily irreducible) variety G that
is also a group, such that the group law

µ : G×G→ G, (g, h) 7→ gh

and the inverse
ι : G→ G, g 7→ g−1

are regular maps (we will consider also group schemes, but in this
introduction we stick to varieties). The identity element of the group
is a point denoted e ∈ G.

Example 1.1. Any �nite group can be viewed as a group variety.

Example 1.2. The a�ne line A1 is a group variety under addition,
and A1 \ {0} is a group variety under multiplication. When viewed as
group varieties, these are usually denoted Ga and Gm (�a� for additive
and �m� for multiplicative).

An action of a group variety G on a variety X is a morphism

(1.1) G×X → X, (g, x) 7→ gx

which is an action of the underlying group of G on the underlying set
of points of X. Thus we require

ex = x, g(hx) = (gh)x

for all x ∈ X and g, h ∈ G.

Example 1.3. Multiplication de�nes an action

Gm ×A1 → A1

of the multiplicative group Gm on the a�ne line A1.

The main theme in these notes is that of quotients, i.e. a variety
associated to an action (1.1) that deserves the name X/G. Ideally, its
points should correspond to orbits in X, although we will see that it is
useful to weaken this requirement. We focus here on local questions, so
we assume that X = SpecA is a�ne. Viewing A as the ring of regular
functions on X, it is easy to suggest a candidate quotient: A regular
function on X/G should be the same thing as a regular function on X
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6 1. PREVIEW: GROUP VARIETIES AND ACTIONS

that is constant on all orbits. These functions form a ring, which is the
invariant ring

AG = {f ∈ A f(gx) = f(x) ∀ g ∈ G, x ∈ X}.
Then it is reasonable to suggest the de�nition

(1.2) X/G
?
= SpecAG.

But here we have implicitly made the assumption that the quotient is
a�ne (we decided what the global regular functions on the quotient
should be, and then we took the spectrum of that). Moreover, it is
not even clear that the right hand side is a variety, the problem being
that the invariant ring may not be �nitely generated. Nevertheless, the
de�nition suggested above is the right one for an interesting class of
groups, called reductive, which we will study rather intensively in the
sequel. Here we just state the fact that a �nite group is reductive, as
long as its order is not divisible by the characteristic of the base �eld.

Example 1.4. The involution (x, y) 7→ (−x,−y) de�nes an action
of Z/(2) on the a�ne plane A2 (assuming the base �eld k has charac-
teristic di�erent from zero). The invariant ring

k[x, y]Z/(2)

clearly contains the elements

(1.3) u = x2, v = y2, w = xy,

between which there is the relation

(1.4) uv = w2.

It is reasonably straight forward to verify that (1.3) and (1.4) in fact
give a presentation of the invariant ring, so that the quotient is the
cone

A2/(Z/(2)) = Spec k[u, v, w]/(uv − w2).

Example 1.5. Let X = GL(2) be the variety consisting of invert-
ible 2×2 matrices over k and letG ⊂ GL(2) be the subvariety consisting
of upper triangular matrices. Both G and X carry a group structure,
but here we consider G as a group variety and X as a variety, endowed
with the natural G-action of matrix multiplication from the left. Both
X and G are a�ne, but G is not reductive: This is a typical example
of what we will not study in this text. G contains the elements(

a 0
0 1

) (
1 0
0 a

) (
1 a
0 1

)
and is in fact generated by these. Multiplication on the left by these
matrices corresponds to the elementary row operations �scale �rst row
by a�, �scale second row by a� and �add a times the second row to the
�rst row�.



1. PREVIEW: GROUP VARIETIES AND ACTIONS 7

Now consider an arbitrary matrix

x =

(
a b
c d

)
∈ X = GL(2).

Since the determinant ad− bc is nonzero, we have that either c or d is
nonzero. If c is nonzero, then we can apply elementary row operations
as follows:

(1) Scale the second row so that c becomes 1
(2) Subtract a times the second row from the �rst row, so that a

becomes zero
(3) Scale the �rst row so that (the new) b becomes 1

This shows that the G-orbit containing x contains a matrix of the form(
0 1
1 s

)
for some s ∈ k, and it is easily checked that s is unique. Similarly, if d
is nonzero, the orbit contains a unique matrix of the form(

1 0
t 1

)
and if both c and d are nonzero either form is possible, and then
one checks that s = t−1. This means that the projective line P1

parametrizes all G-orbits in X in a natural way, and suggests very
strongly that, whatever we settle on as our notion of quotient, we
should have X/G ∼= P1 in this example. Note that X and G are both
a�ne, but the quotient is projective. One can deduce from the calcu-
lations above that any G-invariant global function on X would factor
through P1, so the invariant ring is just the constants k. Thus (1.2)
would give us the very unreasonable quotient consisting of a point only.
In our context, the solution is to avoid groups such as this G.





CHAPTER 2

Group schemes and actions

1. Group schemes

We �x a base scheme S, which within a couple of sections will
become the spectrum Spec k of a �eld k. A group scheme over S is
a group object in the category of schemes over S. This means that a
group scheme is a scheme G over S, equipped with three morphisms,
the group law

µ : G×S G→ G,

the inverse
ι : G→ G,

and an identity element, which is a morphism

ε : S → G.

(Note that, if S = Spec k, then ε is a k-rational point of G. If S
is something like a variety on its own, a better picture might be to
view G as some sort of bundle of groups over S, with the section ε
giving the identity element in each �bre.) These data are subject to
conditions corresponding to the usual group axioms. For instance, the
associativity law requires (g1g2)g3 = g1(g2g3), or

µ(µ(g1, g2), g3) = µ(g1, µ(g2, g3))

for all points g1, g2, g3 ∈ G. Since a map of possibly nonreduced
schemes is in general not determined by its e�ect on points, we in
fact require something stronger, namely that the diagram

(2.1)

G×S G×S G
1G×µ- G×S G

G×S G
µ×1G ?

µ - G

µ
?

commutes. Similarly, the left and right identity axioms become the
commutativity of

S ×S G
ε×1G- G×S G

G

µ
?-

G×S S
1G×ε- G×S G

G

µ
?-

(2.2)

9



10 2. GROUP SCHEMES AND ACTIONS

(where the anonymous diagonal arrow is the canonical isomorphism),
and the left and right inverse axioms become the commutativity of

G
(ι,1G)- G×S G

S
?

ε - G

µ
?

G
(1G,ι)- G×S G

S
?

ε - G

µ
?

(2.3)

(where the anonymous vertical map is the structure map for G as a
scheme of S). We summarize the de�nition.

Definition 2.1. A group scheme over S is a scheme G over S,
together with maps µ, ι and ε making the diagrams in (2.1), (2.2) and
(2.3) commute.

Remark 2.2. We emphasize that if G is a group variety (a reduced
separated group scheme of �nite type over an algebraically closed �eld
k), then the commutativity of the above diagrams is equivalent to the
group axioms for G considered as a set (of closed points). This follows
since maps between varieties are determined by their e�ect on closed
points.

Definition 2.3. A group scheme homomorphism φ : G → H be-
tween group schemes G and H is a morphism of schemes that is com-
patible with the multiplication, inverse and unit morphisms.

We will almost exclusively deal with a�ne group schemes G =
SpecB, de�ned over an a�ne base S = SpecR. Thus B is an R-
algebra, and the group structure is de�ned by three R-algebra homo-
morphisms

µ∗ : B → B ⊗R B
ι∗ : B → B

ε∗ : B → R

called the comultiplication, the coinverse and the counit. An algebra
equipped with these maps, making the diagrams of algebra homomor-
phisms corresponding to (2.1), (2.2) and (2.3) commute, is called a
Hopf algebra. Thus, to give Spec(B) the structure of an a�ne group
scheme over Spec(R) and to give B the structure of a Hopf-algebra
over R, is the same thing.1

We can now redo Example 1.2 in a more general setting.

Example 2.4. The a�ne lineGa,R = SpecR[t] over any ring R can
be equipped with the structure of a group scheme over R: If we identify
R[t]⊗R R[t] = R[t1, t2], then the comultiplication can be written

µ∗ : R[t]→ R[t1, t2], t 7→ t1 + t2.

1Later on, G will act on an a�ne scheme X = Spec(A): We have cleverly

chosen symbols such that R is a Ring, A is an Algebra over R and B is a Bialgebra

over R.
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The coinverse and the counit are the two maps

ι∗ : R[t]→ R[t], t 7→ −t
ε∗ : R[t]→ R, t 7→ 0.

Similarly, we equip Gm,R = SpecR[t, t−1] with the group structure
de�ned by

µ∗ : R[t, t−1]→ R[t, t−1]⊗R R[t, t−1], t 7→ t⊗ t
ι∗ : R[t, t−1]→ R[t, t−1], t 7→ t−1

ε∗ : R[t, t−1]→ R, t 7→ 1.

The reader is invited to check at least one of the group axioms by
verifying that the required diagram is commutative.

We next show that the general linear group is a group scheme in
a natural way. The only substantial input needed is the observation
that the multiplication law and the inverse law are given by polynomial
functions in the matrix entries and the inverse of its determinant. From
this it is at least immediate that the general linear group over an alge-
braically closed �eld is a group variety. But in fact, all that is required
to extend this claim to the general linear group over an arbitrary ring
R, is some care with the notation.

Example 2.5. Let R[xij] be the polynomial algebra in n2 variables
xij, for 1 ≤ i, j ≤ n. Then an R-valued point of the scheme An2

R =
SpecR[xij] can be viewed as an n× n matrix with entries from R. We
let ∆ ∈ R[xij] denote the determinant of (xij), which is a homogeneous
polynomial of degree n. The open subscheme

GL(n,R) = SpecR[xij,∆
−1] ⊂ An2

R

has as R-valued points the set of invertible matrices with entries from
R. This is a group. In fact, GL(n,R) is a group scheme over R in a
natural way: The comultiplication can be de�ned already on R[xij] by
the homomorphism

R[xij]→ R[xij]⊗R[xij], xij 7→
∑
v

xiv ⊗ xvj.

Note how this is de�ned: Multiply together two copies of the matrix
(xij), writing ⊗ for the multiplication. Then the homomorphism sends
xij to entry (i, j) in this matrix. As the determinant is multiplicative,
∆ is sent to ∆⊗∆, and hence there is an induced homomorphism

µ∗ : R[xij,∆
−1]→ R[xij,∆

−1]⊗R[xij,∆
−1].

The coinverse
ι∗ : R[xij,∆

−1]→ R[xij,∆
−1]
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sends xij to entry (i, j) in the (formal) inverse of the matrix (xij). By
Cramer's rule, this is entry (j, i) in the cofactor matrix of (xij), divided
by ∆. Finally, the counit is the identity matrix, i.e.

ε∗ : R[xij]→ R

sends xij to entry (i, j) in the identity matrix, which is Kronecker's δij.
The veri�cation that this de�nes a Hopf algebra structure, i.e. that the
diagrams (2.1), (2.2), (2.3) commute, is rather formal, and boils down
to the fact that matrix multiplication ful�lls the usual group laws.

Note that for n = 1, the group GL(1, R) can be identi�ed with the
multiplicative group Gm,R.

Example 2.6. The special linear group SL(n,R) is the closed sub-
group of GL(n,R) de�ned by ∆ = 1, i.e.

SL(n,R) = SpecR[xij]/(∆− 1).

It is clear that the group scheme structure on GL(n,R) induces a group
scheme structure on SL(n,R).

Example 2.7. The projective linear group PGL(n,R) is the spec-
trum of the ring of degree zero elements in R[xij,∆

−1],

PGL(n,R) = Spec(R[xij,∆
−1]0).

The ring in question is a sub Hopf algebra of R[xij,∆
−1], which means

that it carries an induced Hopf algebra structure, and hence PGL(n,R)
is a group scheme. We are brief here, as we will have more to say about
this group later.

So far we have merely taken well known groups over a �eld, noted
that the group law and the inverse law are regular maps, and then made
the observation that the construction makes sense over an arbitrary
base ring. In contrast, the following example makes sense only in a
scheme theoretic setting.

Example 2.8. Let k be a �eld of characteristic p > 0. De�ne a
scheme

αp = Spec k[t]/(tp)

which can be viewed as a �nite subscheme of the additive group Ga

over k, supported at the origin, i.e. the unit for the group law. In fact,
αp is a subgroup scheme in the obvious sense: The comultiplication

µ∗ : k[t]/(tp)→ k[t]/(tp)⊗k k[t]/(tp) ∼= k[t1, t2]/(t
p
1, t

p
2),

sending t 7→ t1 + t2 is well de�ned since (t1 + t2)
p = tp1 + tp2 in charac-

teristic p.

Example 2.9. Let k be a �eld of arbitrary characteristic, and de�ne
for each integer n a scheme

µn = Spec k[t]/(tn − 1)
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This is a subgroup scheme of the multiplicative group Gm over k, as is
easily veri�ed. If k is algebraically closed, and its characteristic does
not divide n, then µn is just a cyclic group of n elements, with the
discrete scheme structure (i.e. a disjoint union of n copies of Spec k).
Over k = C, the group can be depicted as n evenly spaced points on
the unit circle. However, if k has characteristic p > 0, and we let n = p,
then (tp − 1) = (t− 1)p and hence

µp = Spec k[t]/((t− 1)p)

is a nonreduced scheme supported at the unit 1 ∈ Gm.

It is no coincidence that we have seen nonreduced group schemes
only in positive characteristic: By a theorem of Cartier, every group
scheme of �nite type over an algebraically closed �eld of characteristic
zero is reduced. A related, but easier, observation is the following:

Proposition 2.10. Let G be a group variety, i.e. a separated re-
duced group scheme of �nite type over an algebraically closed �eld k.
Then G is nonsingular.

Proof. For any point g ∈ G, let tg denote the translation map
µ(g,−), i.e. the restriction of the group law to {g} ×G:

tg : G ∼= {g} ×G ⊂ G×G µ−→ G

Then tg is an automorphism of G, in fact tι(g) is the inverse map.
Moreover tg sends the unit e ∈ G to g ∈ G. Since g was arbitrary
to begin with, this shows that G is either nonsingular everywhere, or
singular everywhere, but the latter is impossible. �

Note that the proof in fact shows much more: the local rings at
any two k-rational points, on an arbitrary group scheme G over k,
are isomorphic. Thus G has the same local properties everywhere. In
particular, if G is nonreduced, then it has to be nonreduced everywhere.
Cartier's theorem says that this is impossible for a �nite type G in
characteristic zero.

Remark 2.11. Identify a schemeX with its functorX(−) of points,
i.e. for each scheme T , we let X(T ) be the set of morphisms T → X.
Then to give a scheme G the structure of a group scheme is equivalent
to give a factorization of the functor G(−) through the category of
groups. Thus, informally, a group scheme G is a scheme such that
G(T ) is a group for all T . We will not pursue this viewpoint here.

2. Actions

Let G be a group scheme over an arbitrary base scheme S, and let
X be another scheme over S. Recall that if we worked with sets and
not schemes, then an action of G on X would be a map

σ : G×X → X
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also written gx = σ(g, x), satisfying the identity law ex = x and the
associativity law (gh)x = g(hx), for all x ∈ X and g, h ∈ G. Again
these axioms lead to commutative diagrams, so that the identity law
becomes the commutativity of

(2.1)

S ×S X
ε×idX- G×S X

X

σ
?-

and the associativity law becomes the commutativity of

(2.2)

G×S G×S X
µ×idX- G×S X

G×S X
idG×σ ?

σ - X

σ
?

.

Definition 2.1. An action of G on X is a map σ making the
diagrams (2.1) and (2.2) commute.

Example 2.2. The group law itself de�nes an action σ = µ of any
group scheme on itself. This action is called left translation.

Let X = SpecA be an a�ne scheme and G = SpecB an a�ne
group scheme, both over an a�ne base S = SpecR. Thus A and B
are R-algebras, and A is also a Hopf algebra. An action σ of G on
X corresponds to a coaction of the Hopf algebra B on A, i.e. a ring
homomorphism

σ∗ : A→ B ⊗R A
�tting into the two commutative diagrams of algebra homomorphisms
corresponding to (2.1) and (2.2).

Example 2.3. Let

An
R = SpecR[x1, . . . , xn]

be an a�ne space over R. The additive group Ga,R acts on An
R by

translation. More precisely, the coaction

σ∗ : R[x1, . . . , xn]→ R[x1, . . . , xn, t]

sends each xi to xi + t.

Example 2.4. The general linear group GL(n,R) over R acts by
matrix multiplication on the a�ne space An

R. More precisely, the coac-
tion

σ∗ : R[x1, . . . , xn]→ R[xij,∆
−1]⊗R R[x1, . . . , xn]

is de�ned by sending xi to the i'th entry in the column vector obtained
by multiplying the matrix (xij) with the column vector (xi), writing ⊗
for the product. Thus

σ∗(xi) =
∑
j

xij ⊗ xj.
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Of course, the determinant plays no role in this example (the semigroup
of all, not necessarily invertible, n×n matrices does act on a�ne space,
but this does not interest us).

Letting n = 1 in this example, we �nd the action of Gm on a�ne
space by scaling. Also, by restricting to a subgroup like SL(n,R) of
GL(n,R), we get an induced action.

Proposition 2.5. Let R be a ring and A an R-algebra. There
is a canonical one-to-one correspondence between actions of Gm,R on
X = SpecA and gradings A =

⊕
n∈ZAn on A.

Proof. An action of Gm,R on X is given by a coaction

σ∗ : A→ R[t, t−1]⊗R A ∼= A[t, t−1].

Brie�y, a coaction with

(2.3) σ∗(a) =
∑
n

ant
n

corresponds to the grading on A in which a =
∑

n an is the decompo-
sition into degree n homogeneous parts an.

Precisely, given a coaction σ∗, de�ne

An = {a ∈ A σ∗(a) = atn}.
Since σ∗ is an R-algebra homomorphism, it is immediate that An ⊂ A
is an R-submodule and that AnAm ⊆ An+m. It is also clear that
An∩Am = 0 for distinct n and m, so to see that we have a well de�ned
grading we only need to check that the An's generate A, i.e. every
a ∈ A can be written a =

∑
an with an ∈ An. So let an be de�ned by

(2.3). Since the coidentity on R[t, t−1] sends t to 1, it follows from the
identity axiom for σ∗ that we have

a =
∑
n

an.

We need to check that an is in fact in An. So let σ∗(an) =
∑

m an,mt
m.

The associativity axiom for σ∗ can now be written∑
n,m

an,mt
n
1 t
m
2 =

∑
n

ant
n
1 t
n
2 .

Comparing coe�cients, we �nd that an,m = 0 for n 6= m and an,n = an,
so σ∗(an) = ant

n and thus an ∈ An.
The reader will have no di�culties in verifying that each step in the

argument can be reversed, giving the other direction of the correspon-
dence. �
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3. Representations of a�ne groups

Let G = SpecB be an a�ne group scheme over a �eld k.

Definition 2.1. A linear group is a closed subgroup scheme of
GL(n, k), i.e. a closed subscheme such that the inclusion is a group
scheme homomorphism.

Since GL(n, k) is a�ne and of �nite type over k, any closed sub-
scheme is a�ne and of �nite type. Thus every linear group is an a�ne
group scheme of �nite type. In this section we prove that the converse
also holds.

Definition 2.2. A representation of G is a group scheme homo-
morphism

ρ : G→ GL(n, k)

Definition 2.3. A corepresentation of the Hopf algebra B on a
vector space V is a k-linear map

s : V → B ⊗k V
such that the diagrams (identity, respectively associativity)

V
s- B ⊗k V

k ⊗k V
ε∗⊗idV?-

V
s - B ⊗k V

B ⊗k V
s
?

idB ⊗s- B ⊗k B ⊗k V
µ∗⊗idV?

commute.

Remark 2.4. For each k-rational point in G, considered as a ho-
momorphism g : B → k, the corepresentation s gives a linear map

V
s−→ B ⊗k V

g⊗idV−−−→ k ⊗k V ∼= V

sending v ∈ V to a vector we denote by vg ∈ V . It follows from the
axioms for a corepresentation that this de�nes a (right) action of the
group of k-rational points in G on V . If G is a variety (meaning also
that k is algebraically closed), then the action v 7→ vg determines the
corepresentation entirely: We may expand s(v) =

∑
i bi ⊗ ei in terms

of a basis ei for V , and then vg =
∑

i bi(g)ei, where bi(g) means the
evaluation of the function bi on the point g. If we know the value of bi
at all (closed) points g ∈ G, then we know the function bi, and hence
also s(v).

Example 2.5. If σ : G×X → X is an action, then the coaction

σ∗ : A→ B ⊗k A
is a corepresentation. Here we view A as a (typically in�nite dimen-
sional) vector space. If G is a variety, then the right action associated
to σ∗ in the previous remark is the one sending a function f ∈ A on X
to the function f g(x) = f(gx).
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If V has basis ei, then the corepresentation is uniquely determined
by elements bij ∈ B such that

s(ei) =
∑
j

bij ⊗ ej

(the basis does not need to be �nite, but of course these sums are, so
there are �nitely many nonzero bij for each �xed i). The two axioms
then translates to the equalities

ε∗(bij) = δij(2.1)

µ∗(bij) =
∑
v

biv ⊗ bvj(2.2)

as is easily checked by tracing the basis elements through the two com-
mutative diagrams in De�nition 2.3. Note that there are only �nitely
many nonzero terms in the sum appearing here. We also make the
observation that, by the (right) inverse axiom for the group G, we have

(2.3)
∑
v

bivι
∗(bvj) = δij

and similarly for the left inverse axiom. These three equalities should
remind the reader of the Hopf algebra sturcture on the coordinate ring
of GL(n, k).

Proposition 2.6. If V = kn then there is a canonical one to one
correspondence between corepresentations of the Hopf algebra B on V
and representations

ρ : G→ GL(n, k).

Proof. A representation ρ corresponds to a k-algebra homomor-
phism

ρ∗ : k[xij,∆
−1]→ B.

Such a map is given by elements bij = ρ∗(xij), subject to the condition
that the determinant of the matrix (bij) is invertible in B. For ρ to
be a representation, we need ρ∗ to be compatible with the counit, the
comultiplication and the coinverse. By de�nition of the group structure
on GL(n, k), this means that the equations (2.1), (2.2) and (2.3) should
hold. But a corepresentation is also given by elements bij ∈ B such
that these three equations hold (observe that (2.3) implies that (bij) is
invertible, and thus has invertible determinant). �

Let us say that a sub vector space W ⊂ V is invariant if s(W ) ⊂
A⊗k W , i.e. s restricts to an induced corepresentation

s|W : W → A⊗k W.

Lemma 2.7. Every corepresentation s : V → A⊗kV is locally �nite,
i.e. every v ∈ V is contained in an invariant �nite dimensional subspace
W ⊂ V .
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Proof. The main point is just that s(v) can be written as a �nite
sum

s(v) =
n∑
i=1

ai ⊗ vi,

for ai ∈ A and vi ∈ V . This expression is not uniquely determined,
but we may choose one with minimal n, which implies that the ai's
are linearly independent over k. Let W ⊂ V be the vector subspace
spanned by the vi's, which is clearly �nite dimensional.

Since we have v =
∑

i ε
∗(ai)vi by the identity axiom, the subspace

W contains v, and it remains to see that W is invariant, i.e. that s(W )
is contained in A⊗k W . By the associativity axiom, we have

(id⊗s)(s(v)) = (µ∗ ⊗ id)(s(v))

which expands to ∑
i

ai ⊗ s(vi) =
∑
i

µ∗(ai)⊗ vi.

Now, for each j = 1, . . . , n, choose a k-linear map φj : A→ k such that
φj(ai) = δij (this de�nes φj uniquely on the subspace of A spanned
by a1, . . . , an, and we may for instance let φj be zero on a chosen
complementary subspace). Then, applying φj ⊗ idA⊗ idV : A⊗k A⊗k
V → A⊗k V to both sides of the last equality, we get

s(vj) =
∑
i

bi ⊗ vi

for certain elements bi ∈ A. This proves that s(vj) ∈ A⊗W , and thus
W is invariant. �

Theorem 2.8. Every a�ne group scheme G = SpecA of �nite type
is linear.

Proof. Consider the comultiplication

µ∗ : A→ A⊗k A
as a corepresentation on A. Choose a �nite generating set for A as
a k-algebra. By the lemma, each generator is contained in a �nite
dimensional invariant subspace. The sum of all these subspaces is an
invariant �nite dimensional subspace V ⊂ A that generates A as a
k-algebra. Choose a basis ei for V .

By Proposition 2.6, the restricted corepresentation V → A ⊗k V
corresponds to a representation ρ : G→ GL(n, k), given by

ρ∗ : k[xij,∆
−1]→ A, xij 7→ aij.

By the right identity axiom for the Hopf algebra A, we have

ei =
∑
j

aijε
∗(ej)
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and thus the image of ρ∗ contains all of V ⊂ A. Since ρ∗ is a k-algebra
homomorphism, and V generates A, we conclude that ρ∗ is surjective,
which means that ρ : G→ GL(n, k) is a closed immersion. �

4. More on corepresentations

We �x a group G = SpecB over a �eld k and consider corepresen-
tations of the Hopf algebra B.

Definition 2.1. Let s : V → B ⊗k V be a corepresentation. The
invariant subspace V G is

V G = {v ∈ V s(v) = 1⊗ v}.
In particular, if s = σ∗ is induced by an action σ on an a�ne scheme
X = SpecA, then AG is called the invariant ring.

Remark 2.2. If G is a variety (over an algebraically closed �eld k),
a vector v ∈ V is invariant if and only if v is invariant under the action
of closed points in G, i.e. we have vg = v for all g ∈ G (see Remark
2.4). In particular, we recover the de�nition of the invariant ring used
in Chapter 1.

Definition 2.3. A homomorphism between two corepresentations

s : V → B ⊗k V, t : W → B ⊗k W
is a vector space homomorphism f : V → W such that the diagram

V
s- B ⊗k V

W

f
?

t- B ⊗k W

id⊗kf
?

commutes.

Remark 2.4. The image and kernel of a homomorphism are invari-
ant, and hence are corepresentations on their own.

Remark 2.5. We leave it to the reader to de�ne direct sums and
(�nite) tensor products of corepresentations. Also, the quotient V/W
of a corepresentation by an invariant subspace W ⊂ V is a corepresen-
tation in a natural way.

It may be slightly surprising that, given a corepresentation V , there
is no obvious way to write down a �dual� corepresentation on the dual
vector space V ∨: At least in the case of varieties, one could consider
the action of closed points of G on V , in the sense of Remark 2.4,
dualize that action, and ask whether this dualized action again were
induced from a corepresentation on V ∨. The problem is that the dual
action may not be locally �nite. We circumvent this di�culty by only
dualizing corepresentations on �nite dimensional vector spaces.
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Definition 2.6. Let s : V → B⊗kV be a corepresentation. A dual
corepresentation is a corepresentation s∨ : V ∨ → B ⊗k V ∨ such that

V ⊗k V ∨ - B ⊗ V ⊗k V ∨

k

ev
?

- B ⊗k k
id⊗ ev

?

commutes, where ev(v⊗ α) = α(v) is the evaluation map, and the top
horizontal map is the corepresentation on the tensor product V ⊗ V ∨.

Lemma 2.7. A �nite dimensional corepresentation V has a unique
dual corepresentation.

Proof. Choose a basis vi for V and let v∨i be the dual basis for
V ∨. Let the corepresentation s on V be given by

s(vi) =
∑
j

bij ⊗ vj.

By tracing the basis vi ⊗ v∨j through the diagram in the de�nition, we
�nd that a dual corepresentation is necessarily given by

s∨(v∨i ) =
∑
j

ι∗(bji)v
∨
j

and it is straight forward to verify that this does de�ne a corepresen-
tation. �

Definition 2.8. If V and W are two corepresentations, and V is
�nite dimensional, we give the vector space Homk(V,W ) the corepre-
sentation structure of V ∨ ⊗k W .

Remark 2.9. The corepresentation Homk(V,W ) �ts into a commu-
tative diagram analogous to the one in De�nition 2.6. It can be deduced
from this that the invariant subspace Homk(V,W )G is the vector space
of homomorphisms V → W of corepresentations.

Definition 2.10. Let G = SpecB be a group scheme.
(1) A corepresentation s : V → B⊗k V is irreducible if there is no

nontrivial invariant subspace W ⊂ V .
(2) A corepresentation V is completely reducible if it is isomorphic

to a direct sum
⊕

i Vi of irreducible corepresentations.

Remark 2.11. By local �niteness, Lemma 2.7, an irreducible corep-
resentation is �nite dimensional.

Lemma 2.12 (Schur's Lemma). (1) A homomorphism f : V →
W between irreducible corepresentations is either zero or an
isomorphism.

(2) Suppose k is algebraically closed. Any homomorphism f : V →
V from an irreducible corepresentation to itself is multiplica-
tion by a scalar in k.
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Proof. The image and kernel of a homomorphism f is invariant.
As V and W contain no nontrivial invariant subspaces, the �rst claim
is clear.

As V is �nite dimensional, we may choose a �nite basis and view f
in (2) as an n×n matrix. As k is algebraically closed, its characteristic
polynomial has a zero λ, which is an eigenvalue for f . Then

f − λ : V → V

is a homomorphism of corepresentations, hence is either zero or an
isomorphism. But then it is zero, since there exists an eigenvector
v ∈ V satisfying (f − λ)(v) = 0. Thus f = λ. �

The decomposition V =
⊕

i Vi of a completely reducible corepre-
sentation V into irreducibles Vi is in general not unique, as already a
trivial representation shows. However, given such a decomposition, let
V (µ) ⊂ V denote the direct sum of those Vi that belong to the same
isomorphism class λ of corepresentations. The resulting decomposition
V =

⊕
µ V (µ) is called the isotypical decomposition. Note that, if we

let µ = 1 denote the trivial 1-dimensional corepresentation, then V (1)
is just V G.

Proposition 2.13. Let V be a completely irreducible corepresen-
tation, choose a decomposition V =

⊕
i Vi into irreducibles and let

V =
⊕

µ V (µ) be the associated isotypical decomposition.

(1) Choose a corepresentationW in the isomorphism class µ. Then
V (µ) is the image of the evaluation map

W ⊗ Homk(W,V )G → V.

(2) The isotypical decomposition V =
⊕

µ V (µ) is independent of
the chosen decomposition into irreducibles.

Proof. The image of the evaluation map is the vector space spanned
by the elements f(w), for all w ∈ W and all homomorphisms f : W →
V of corepresentations. Clearly V (µ) is contained in this space, since
for any Vi in the class µ, we may take f to be the composition of an
isomorphism W ∼= Vi with the inclusion Vi ⊂ V . Conversely, for any
Vi not in µ and any homomorphism f , the composition

W
f−→ V → Vi

(the rightmost map being the projection) is zero, by Schur's lemma.
Thus the image of the evaluation map is contained in V (µ). This proves
(1).

The claim (2) follows since claim (1) gives a description of V (µ) ⊂ V
that is independent of the chosen decomposition. �
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5. Linearly reductive groups

We now turn to the for us very important class of linearly reductive
a�ne groups.

Definition 2.1. An a�ne group G = SpecB over k is linearly
reductive if there exists an invariant integral

I : B → k,

i.e. a k-linear function satisfying I(1) = 1 and left- and right-invariant
in the sense that

B ⊗k B �
µ∗

B
µ∗- B ⊗k A

k ⊗k B

I⊗id
?

� k

I
?

- B ⊗k k

id⊗I
?

commutes.

Remark 2.2. The de�nition implies that for every k-rational point
g ∈ G, and every element φ ∈ B, we have I(φ) = I(φg), where φg

denotes the (left) translation of φ by g (see Remark 2.4 and Example
2.5). Similarly, I is invariant under right translation by k-rational
points of G, de�ned in the analogous way. If G is a variety, invariance
in this sense is equivalent to the de�nition above, i.e. if I takes the same
value on φ(−), φ(g(−)) and φ((−)g) for all (closed) points g ∈ G, then
the diagrams in the de�nition commute.

Example 2.3. Let G be a �nite group, considered as a group
scheme over an arbitrary �eld k. Then G is linearly reductive if and
only if its order n is not divisible by the characteristic of k. In fact, if
this condition is satis�ed,

I(φ) =
1

n

∑
g∈G

φg

de�nes an invariant integral. Conversely, if there exists an invariant
integral, let φ be the regular function that takes the value 1 on the
unit e ∈ G and is zero everywhere else. Then the constant function 1
can be written

1 =
∑
g∈G

φg

and hence we have

1 = I(1) =
∑
g∈G

I(φg) = nI(φ)

showing that n is invertible in k.

Example 2.4. The multiplicative group Gm = Spec k[t, t−1] is lin-
early reductive. In fact

I(1) = 1, I(td) = 0 for d 6= 0
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is an invariant integral, as is quickly veri�ed.

Example 2.5. The additive group Ga = Spec k[t] is not linearly
reductive: Since I would have to be invariant under translation by the
(k-rational) point 1 ∈ Ga, we would have

I(t) = I(t+ 1) = I(t) + I(1)

showing I(1) = 0.

Definition 2.6. Let s : V → B ⊗k V be a corepresentation.
(1) A Reynolds operator for s is a k-linear invariant map

E : V → V G

which splits the inclusion V G ⊂ V .
(2) A natural Reynolds operator is a choice of a Reynolds operator

E for every corepresentation V , such that whenever φ : V →
W is a homomorphism of corepresentations, the diagram

V
φ- W

V G

E ?
φ- WG

E ?

commutes.

Remark 2.7. The requirement that E is invariant means that

V
s- B ⊗k V

V G

E ?
- B ⊗k V G

1⊗E ?

commutes, where the map at the bottom is the trivial corepresentation
v 7→ 1⊗ v.

We observe in the next lemma that for completely reducible corep-
resentations, Reynolds operators are automatically natural.

Lemma 2.8. Suppose V is a completely reducible corepresentation.

(1) A Reynolds operator for V , if one exists, is unique.
(2) Let f : V → W be a homomorphism to a second (not neces-

sarily completely reducible) corepresentation W . If V and W
both admit Reynolds operators E, then the diagram

V
f- W

V G

E ?
f- WG

E ?

commutes.

Proof. Consider the following claim: If U is a vector space, con-
sidered as a trivial corepresentation, and

F : V → U
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is an (invariant) homomorphism mapping V G to zero, then F is zero.
The claim implies the lemma: In (1) we may let F be the di�erence
E − E ′ between two Reynolds operators, and in (2) we may let F =
E ◦ f − f ◦ E. Thus we only need to prove the claim.

Let W ⊂ V be an irreducible corepresentation. If W is trivial, then
W ⊂ V G, and thus f(W ) = 0. If W is nontrivial, then it cannot be
embedded into the trivial corepresentation U , so F cannot be injective
on W . But the kernel of F is invariant, and W is irreducible, so we
must have F (W ) = 0. By complete irreduciblity, it follows that F is
zero. �

Proposition 2.9. Let G = SpecB be an a�ne group over a �eld
k. Then G is linearly reductive if and only if the following equivalent
conditions hold.

(i) There exists a functorial Reynolds operator on all corepresen-
tations.

(ii) The functor sending a corepresentation V to the vector space
V G is exact.

(iii) For each �nite dimensional corepresentation V and each in-
variant subspace W ⊂ V , there exists a complementary in-
variant subspace W ′ ⊂ V such that V = W ⊕W ′.

(iv) Every corepresentation V is completely reducible.

Proof. We prove that the existence of an invariant integral implies
(i), then that each statement in the list implies the next one, and �nally
that (iv) implies the existence of an invariant integral.

(i) Assume I : B → k is an invariant integral, and let V be a corep-
resentation. Let E be the the composition

E : V
s−→ B ⊗k V

I⊗id−−→ k ⊗k V ∼= V.

Then E is k-linear, and it follows from I(1) = 1 that E is the identity
on V G. The invariance of E is expressed by the outer rectangle in the
diagram

V
s - B ⊗k V

I⊗id - V

B ⊗k V

s
?

µ∗⊗id- B ⊗k B ⊗k V

id⊗s
?

id⊗I⊗id- B ⊗k V
?

in which the left square commutes by the associativity axiom for the
corepresentation, and the right square commutes by the left invariance
of I. Furthermore, the image of E is in V G if the outer pentagon in
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the diagram

V
s - B ⊗k V

I⊗id - V

B ⊗k B ⊗k V

µ∗⊗id
?

B ⊗k V

s

?

id⊗s -

B ⊗k V
?

I⊗id⊗ id

-

V

s
-I⊗id

-

commutes. And it does, since the commutativity of the top left trapez-
ium is the associativity axiom, the commutativity of the top right
trapezium is due to I being right invariant, and the diamond at the
bottom commutes for trivial reasons. Finally, it is evident that E is
natural.

(ii): The functor V 7→ V G is in any case left exact. Furthermore, if
φ : V → W is surjective and w ∈ WG, then there exists a not necessarily
invariant vector v ∈ V such that φ(v) = w. If (i) is satis�ed, so we
have functorial Reynolds operators E, then

φ(E(v)) = E(φ(v)) = E(w) = w

which proves that the restriction φ : V G → WG is surjective.
(iii) Restriction to W ⊂ V de�nes a surjective map

Hom(V,W )→ Hom(W,W )

which is a homomorphism of corepresentations. Assuming (ii) holds,
also

Hom(V,W )G → Hom(W,W )G

is surjective. Thus we may lift id : W → W to an invariant element
f ∈ Hom(V,W )G, which means that f is a homomorphism of corepre-
sentations which splits the inclusion W ⊂ V . It follows that the image
W ′ of f is an invariant complement to W .

(iv) Under the hypothesis (iii) it is clear that any �nite dimensional
corepresentation is completely reducible. For an arbitrary corepresen-
tation V , Zorn's lemma gives the existence of a maximal collection {Vi}
of irreducible invariant subspaces Vi ⊂ V that is linearly independent,
i.e.

∑
i Vi =

⊕
i Vi. Then (iii) together with locally �niteness shows

that these Vi necessarily span all of V : For if v ∈ V is not in their
span, let W ⊂ V be a �nite dimensional invariant subspace containing
v. Then there exists an invariant complement X ⊂ W to W ∩ (

⊕
i Vi),

and X contains an irreducible invariant Y ⊂ X. If we adjoin Y to
the collection {Vi} we obtain a strictly larger collection of linearly in-
dependent and invariant subspaces of V , contradicting maximality of
{Vi}.
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Finally, if every corepresentation is completely reducible, we show
that there exists an invariant integral I : B → k. Firstly, we may
consider B itself as a corepresentation (left translation), and then
BG = k. Thus, any decomposition of B into irreducibles looks like
B = k ⊕ (

⊕
iWi) where k is the trivial representation and each Wi

is nontrivial and irreducible. The projection onto k is evidently a left
invariant integral. To prove that it is also right invariant, we apply the
construction of a Reynolds operator considered in the �rst part of the
proof: Namely, the composition

I ′ : B
µ∗−→ B ⊗k B

I⊗id−−→ B

is k-linear, sends 1 to 1 and is left invariant. Thus both I and I ′ are
Reynolds operators for B, considered as the left translation corepre-
sentation. By Lemma 2.8 we have I = I ′, which says precisely that I
is right invariant also. �

Remark 2.10. Suppose that G = SpecB is linearly reductive and
acts on X = SpecA. The associated corepresentation

σ∗ : B → B ⊗k A
is a ring homomorphism, which has the following consequence: If x ∈
AG is invariant, then multiplication by x is a homomorphism of corep-
resentations A→ A. Hence, by functoriality of Reynolds operators, we
must have

(2.1) E(xy) = xE(y) for all x ∈ AG and y ∈ A.
This is the Reynolds identity.

Theorem 2.11. Let G = SpecB be a linearly reductive group act-
ing on an a�ne scheme X = SpecA of �nite type over k. Then the
invariant ring AG is �nitely generated.

Proof. As A is �nitely generated, and any corepresentation is lo-
cally �nite, we may �nd a �nite dimensional invariant subspace V ⊂ A
that generates A as an algebra. For convenience we choose a basis for
V . The corepresentation structure on V corresponds to a linear action
of G on An = Spec k[t1, . . . , tn], and we obtain a surjective map

φ : k[t1, . . . , tn]→ A

(sending the generators ti to the chosen basis elements in V ) which is
a homomorphism both of algebras and of corepresentations. By linear
reductivity, �taking invariants� is exact, so

φ : k[t1, . . . , tn]G → AG

is also surjective. Hence, if k[t1, . . . , tn]G is �nitely generated, then so
is AG.

We have reduced to the case ofG acting linearly onA = k[t1, . . . , tn].
Then AG is graded, and we let J ⊂ AG be the ideal generated by
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homogeneous elements of positive degree. Since A is Noetherian (by
Hilbert's basis theorem, which was invented for this purpose), the ideal
JA is �nitely generated, and we may �nd homogeneous generators
f1, . . . , fm ∈ J (note that fi ∈ AG, but they generate the ideal JA in
A). These elements generate a subalgebra

k[f1, . . . , fm] ⊆ AG

and we claim that we in fact have equality. This is proved by induction
on degree: Let f ∈ AG be homogeneous of degree d > 0. Then f ∈ J ,
so

f = h1f1 + · · ·hmfm
where we can choose hi ∈ A of degree strictly less than d. Now apply
the Reynolds operator E : A → AG, remembering that f and fi are
invariant. We �nd

f = E(f) = E(h1f1) + · · ·+ E(hmfm)

= E(h1)f1 + · · ·+ E(hm)fm

where we used the Reynolds identity in the last step. We note that,
by the functoriality of Reynolds operators, E has to map the invariant
subspace Av ⊂ A, consisting of homogeneous elements of degree v, to
AGv ⊂ AG. Thus E preserves degree, so each E(hi) have degree strictly
less than d. By induction we may assume E(hi) ∈ k[f1, . . . , fm], and
then we are done. �

Corollary 2.12. With assumptions as in the theorem, let A =⊕
µA(µ) be the isotypical decomposition. Then each A(µ) is a �nite

module over AG.

Proof. 2 The component A(µ) is the image of the evaluation map

W ⊗k Hom(W,A)G → A

forW a representative of λ. Hence it su�ces to show that Hom(W,A)G

is a �nite AG-module. More generally, we show that (V ⊗ A)G is a
�nite AG-module for any �nite dimensional corepresentation V (let V =
W∨). For simplicitly we choose a basis V ∼= kn. The corepresentation
corresponds to a representation ρ : G → GL(n), and hence a linear
action of G on An. Now consider the product action of G on

X ×An = SpecA[t1, . . . , tn].

Since the action on An is linear, the invariant ring A[t1, . . . , tn]G is
graded, with AG in degree 0 and (A ⊗ V )G in degree 1. By (1), the
invariant ring A[t1, . . . , tn]G is �nitely generated, and it follows that its
degree 1 part is �nite as a module over its degree 0 part. �

2The presentation is borrowed from Springer: �Aktionen reduktiver Gruppen

auf Varietäten� in �Algebraische Transformationsgruppen und Invariententheorie�.





CHAPTER 3

Quotients

1. Categorical and good quotients

We brie�y return to the general setup, with G a group scheme over
an arbitrary base scheme S, and an action

σ : G×S X → X

on an arbitrary scheme X over S. Let us say that a morphism φ : X →
Y is invariant if the diagram

G×S X
σ- X

X

π2 ?
φ - Y

φ
?

commutes, where π2 denotes second projection. For varieties, this says
φ(gx) = φ(x) for all g ∈ G and x ∈ X.

Definition 3.1. A scheme X/G over S, together with an invariant
morphism

π : X → X/G

is a categorical quotient for the action σ if, for any other invariant
morphism ρ : X → Y , there exists a unique morphism φ : X/G → Y
making the diagram

X
π- X/G

Y

φ
?

ρ
-

commute.

Remark 3.2. The categorical quotient may not exist, but if it does,
it is unique up to unique isomorphism.

Now let S = SpecR, G = SpecB and X = SpecA all be a�ne. If
φ : X → Y is a morphism to an a�ne scheme Y = SpecC, then φ is
invariant if and only if

φ∗ : C → A

satis�es µ∗(f(c)) = 1 ⊗ f(c) for all c ∈ C, i.e. φ∗ has image in AG. It
follows that SpecAG has the universal property of a categorial quotient
among a�ne schemes. This shows that if a categorical quotient X/G
exists and is a�ne then X/G = SpecAG. But, as Example 1.5 shows,
a categorical quotient does not have to be a�ne in general.

29
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Again consider schemes over a �eld k. We next analyse the geome-
try of SpecAG under the hypothesis that G is linearly reductive. The
result is that SpecAG is a so called good quotient, which implies that
it is a categorical quotient. Presupposing this result, we introduce the
following notation.

Definition 3.3. Let G be an a�ne linearly reductive group acting
on X = SpecA. The GIT quotient is the scheme

X/G = SpecAG.

Informally, a quotient X/G should ideally parametrize orbits in X.
But the �bres of π : X → X/G are necessarily closed in X, hence,
if there are non closed orbits, then no quotient in this sense can ex-
ist. As a compromise between wishful thinking and reality, we may
ask instead that π should separate closed orbits, and somewhat more
generally, that π sends disjoint invariant closed subschemes of X to
disjoint subschemes of X/G. The following result says a little bit more
than this.

Theorem 3.4. Suppose G is an a�ne linearly reductive group act-
ing on X = SpecA and with GIT quotient X/G = SpecAG. Let
π : X → X/G be the map induced by the inclusion AG ⊂ A.

(1) If W ⊂ X is a closed invariant subscheme, then the image
π(W ) is closed in X/G.

(2) We have π(
⋂
iWi) =

⋂
i π(Wi) for any collection of closed in-

variant subschemes Wi ⊂ X.
(3) Let U ⊂ X/G be the principal open subset de�ned by the non-

vanishing of an element f ∈ AG. Then U is the GIT quotient
π−1(U)/G.

Remark 3.5. A closed subscheme W ⊂ X is invariant if the re-
striction of the action G × W → X factors through the embedding
W ⊂ X. Equivalently, the ideal I ⊂ A de�ning W is invariant in the
sense of corepresentations. The precise meaning of π(W ) in the theo-
rem is as follows: Assertion (1) is just topological, and says that the
subset π(W ) of prime ideals in A is Zariski closed. But then it has
a canonical scheme structure, since the closure π(W ) is a scheme in
a natural way in any case. Assertion (2) then holds as an equality of
schemes.

Remark 3.6. A scheme X/G satisfying the three properties in the
theorem is called a good quotient. This notion makes sense for actions
on arbitrary, not necessarily a�ne, schemes X, with (3) appropriately
modi�ed.

Lemma 3.7. If G is linearly reductive, then for any ideal I ⊂ AG,
we have

IA ∩ AG = I.
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Proof. It is obvious that I ⊆ IA ∩ AG. Conversely, any element
in IA ∩ AG looks like

f =
∑
i

fihi

with f, fi ∈ AG and hi ∈ A. Apply the Reynolds operator to obtain

f = E(f) =
∑
i

E(fihi) =
∑
i

fiE(hi)

and the expression on the right is clearly in I. �

Proof of the theorem. We �rst establish that π itself is sur-
jective: If P ⊂ AG is a prime ideal, then by Lemma 3.7, we have

PA ∩ AG = P

which implies1 that there is a prime ideal Q ⊂ A with P = Q ∩ AG.
This says that π sends Q to P , so π is surjective.

Proof of (1): Suppose W = V (I) for an invariant ideal I ⊂ A.
The closure of the image π(W ) is the closed subscheme de�ned by
I ∩ AG = IG. By the exactness of �taking invariants�,

0→ IG → AG → (A/I)G → 0

is exact, which shows that

π(W ) = Spec
(
(A/I)G

)
.

Hence we may apply the �rst part of the argument to conclude that

π|W : W → π(W ) = W/G

is surjective, and thus π(W ) = π(W ).
Proof of (2): In view of the �rst part, the claim is that

(3.1)
∑
i

(IGi ) = (
∑
i

Ii)
G

for any collection of invariant ideals Ii ⊂ A. The right hand side
consists of invariant elements f ∈ AG of the form f =

∑
hi with

hi ∈ Ii. Apply the Reynolds operator to �nd

f = E(f) =
∑

E(hi)

where E(hi) ∈ IGi since Ii is invariant and E is natural. This shows
that f is in the left hand side of (3.1). The other inclusion is obvious.

Proof of (3): Since π−1(U) = Spec(Af ), the claim is that

(AG)f = (Af )
G

(the left hand side is the coordinate ring of U and the right hand side
is the coordinate ring of the GIT quotient π−1(U)/G). It is immediate

1see Atiyah-MacDonald Prop. 3.16
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that there is an inclusion (AG)f ⊂ (Af )
G. Moreover, if h/f ∈ (Af )

G,
then we use the Reynolds identity to see that

h/fn = E(h/fn) = E(h)/fn ∈ (AG)f

which proves the claim. �

Remark 3.8. The equality (AG)f = (Af )
G in the last part of the

proof holds in fact without linear reductivity. This is because AG is
the kernel of the AG-module homomorphism

A→ B ⊗k A
sending a to σ∗(a)− 1⊗ a. It follows from this that �taking invariants�
commutes with tensor product −⊗AG M with any �at AG-module M .
Applying this to M = (AG)f shows that (AG)f = (Af )

G.

Corollary 3.9. With assumptions as in the theorem, the GIT
quotient X/G is a categorical quotient.

Proof. Let ρ : X → Y be an invariant map to an arbitrary scheme
Y . We want to show that ρ factors through SpecAG. Here is the
idea: We want to de�ne ρ locally, by applying the already established
universal property for GIT quotients among a�ne schemes. Thus we
need to cover X/G with su�ciently small open a�ne subschemes U ,
such that π−1(U) is mapped by ρ to some open a�ne subset of Y .

So let Y =
⋃
i Vi be an a�ne open cover, and let

Wi = ρ−1(Y \ Vi)
where Y \Vi is considered as a closed subscheme, for instance with the
reduced scheme structure. Then π(Wi) is closed, and we let

Ui = (X/G) \ π(Wi)

be the complement. Since Vi cover Y , we have
⋂
Wi = ∅, which implies

that
⋂
π(Wi) = ∅. This shows that Ui coverX/G. Note that π−1(Ui) ⊂

ρ−1(Vi).
Cover X/G with principal open subsets U = Spec((AG)f ) contained

in some Ui. Since π−1(U) = SpecAf is a�ne, with GIT quotient U ,
we have a commutative diagram

π−1(U)
π- U

Vi

φ
?

ρ
-

where there is a unique φ �tting in by the universal property for the
GIT quotient U among a�ne schemes. The uniqueness gives that these
maps φ : U → Y glue to give the required map X/G→ Y . �

Suppose G and X are varieties. Then it follows from Theorem
3.4 that two closed points x1, x2 ∈ X belong to the same �bre of the
quotient map π : X → X/G if and only if their orbit closures intersect.
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Moreover, each �bre contains a unique closed orbit. Thus X/G can be
viewed as a parameter space for the closed orbits in X.

Note that, in contrast to part (3) of Theorem 3.4, it is not true that
the GIT quotient V/G of an invariant open a�ne subscheme V ⊂ X
coincides with the image π(V ) ⊂ X. Consider for instance the action
of Gm on An by multiplication: The quotient An/Gm = Spec k is just
a point. On the other hand, if V = An \ H is the complement of a
hyperplane,

V = Spec k[x1, . . . , xn, x
−1
n ]

then the invariant ring is the polynomial ring in the n − 1 variables
xi/xn, and so

V/G = An−1.

This is as it should be, since all orbit closures in An intersect, and the
only closed orbit is the origin. In contrast, all orbits in V are closed.

Having established that sensible quotients of a�ne schemes by lin-
early reductive groups exist, we next ask for their geometric properties.
This will be taken up seriously in the next section, but already now we
can say something:

Proposition 3.10. Let X/G = SpecAG be a GIT quotient. Let
P be any of the following properties: �nite type, noetherian, reduced,
irreducible. If X satis�es P , then so does X/G.

Proof. Finite type: This is the content of Theorem 2.11, saying
that if A is �nitely generated, then so is AG.

Noetherian: By Lemma 3.7, the set of ideals in AG is a subset of
the set of ideals in A, and clearly in an inclusion preserving way. Thus
if the ascending chain condition holds for A, then it also holds for AG.

Reduced: Clearly, any nilpotent element of AG would also be a
nilpotent element of A.

Irreducible: An a�ne variety is irreducible if and only if its co-
ordinate ring has prime nilradical. Thus the claim follows from the
observation that the nilradical in AG is the intersection of AG with the
nilradical in A. �

In particular, if X is a variety, then so is X/G.

2. Étale slices

In this section2, all schemes considered are of �nite type over an
algebraically closed �eld k of characteristic zero. By a theorem of
Cartier, any group scheme of �nite type over such a �eld is reduced,
and hence is a nonsingular variety.

2This section is more sketchy than the previous ones and re�ects roughly what

I covered at the lecture, together with what I intended to cover. I hope to �nd the

time to expand this part, and to add references.
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We need to recall, or accept, a couple of notions regarding �bre
bundles: Let G be a group scheme acting on a scheme X, and let
π : X → S be an invariant morphism. Then X is a principal G-bundle
over S if, for every point s ∈ S there exists an étale map U → S with
s in its image, such that there is a Cartesian diagram

G× U - X

U
?

- S
?

where the map G× U → X is equivariant, when G acts on G× U by
multiplication in the �rst factor. In short, X → S is an �étale locally
trivial G-bundle�.

Now let H be a closed subgroup scheme of an a�ne group scheme
G, and consider the action somewhat informally given by

H ×G→ G, (h, g) 7→ gh−1

(the inverse is just inserted to make this a left action; we could just
as well have considered the right action G × H → G given by multi-
plication). Then there exists a categorical quotient G → G/H, which
in fact is a principal H-bundle. This is much stronger than being a
good quotient. In our context we accept this as a �general fact�, which
does not depend on geometric invariant theory. Note however that if
H is linearly reductive, then G/H is necessarily the GIT quotient, but
the quotient here exists in any case, and does not need to be a�ne, as
Example 1.5 shows.

Now, with H ⊂ G as before, suppose H acts on a scheme Y . Then
de�ne an action on the product G × Y , given by letting h ∈ H map
(g, y) 7→ (gh−1, hy). Also here there exists a categorical quotient, and
the projection map is a principal H-bundle. This quotient (G× Y )/H
is the associated �bre bundle, usually denoted G ×H Y . The action of
G on G× Y , given by multiplication (from the left) in the �rst factor,
commutes with the H-action just considered, and hence there is an
induced G-action on the quotient G×H Y . Thus we have extended the
H-action on Y to a G-action on the associated �re bundle. If there
exists a categorical quotient Y/H for the H-action on Y , then there is
a canonical isomorphism

(3.1) (G×H Y )/G ∼= Y/H

(roughly speaking, both sides are obtained from G × Y be taking the
quotient with both the G- and the H-action, which commute).

Theorem 3.1 (Luna's étale slice theorem). Let G be a linearly
reductive group variety acting on a scheme X of �nite type over an al-
gebraically closed �eld k of characteristic zero. Let x ∈ X be a (closed)
point such that the orbit G ·x ⊂ X is closed, and let Gx ⊂ G be its sta-
bilizer. Then there exists a locally closed subscheme S ⊂ X containing
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x, such that the diagram

G×Gx S
φ- X

S/Gx

?
φ- X/G

?

is Cartesian and φ and φ are étale; here φ is induced by the G-action
on X, the vertical maps are the GIT quotients by G, and we have used
the identi�cation (3.1) in the bottom left corner.

Remark 3.2. By a theorem of Matsushita, the stabilizer Gx of a
point with closed orbit is linearly reductive when G is. Thus the GIT
quotient S/Gx in the bottom left corner in the theorem makes sense.

Luna's theorem reduces the (étale) local geometry of the GIT quo-
tient X/G to the local geometry of S/Gx, which typically will be much
simpler. Moreover, the whole G-action of X in an étale neigbourhood
of G ·x is identi�ed with the action on the induced �bre bundle. In the
next section we give a couple of applications of Luna's theorem. In the
remainder of this section we will take up a few points from the proof
of Luna's theorem.

It is relatively straight forward to produce the slice: First one checks
that slices behave well under restriction, in the following sense: If X
is in fact an invariant closed subscheme of another scheme X ′ with a
G-action, and S ′ ⊂ X ′ is an étale slice (i.e. satis�es the claims in the
theorem) for the G-action on X ′, then S = S ′ ∩ X is an étale slice
for the G-action on X. Since we have seen that an arbitrary X can be
embedded in An, such that the G-action extends to a linear one on An,
it su�ces to prove the therorem for linear actions on a�ne spaces. This
goes as follows: The tangent space TG·x(x) to the orbit at x is a Gx-
invariant subspace of TAn(x). Since Gx is linearly reductive (Remark
3.2), there exists a complementary Gx-invariant subspaceW ⊂ TAn(x).
If we identify TAn(x) with An, with origin at x, then a Zariski open
subset of W is going to be the slice: It is not hard to check that the
map φ : G×Gx W → An induces an isomorphism of tangent spaces at
(e, x) ∈ G×GxW and hence is étale there. This concludes the easy part:
To get Luna's theorem, we need the important �fundamental lemma�
of Luna, which we discuss next.

Let φ : Y → X be an equivariant morphism between a�ne schemes
with G-actions. Suppose y ∈ Y is a point with image x = φ(y), subject
to the following conditions:

(1) φ is étale at y
(2) The orbits G · y and G · x are closed
(3) φ restricts to an isomorphism G · y ∼= G · x

Let πY : Y → Y/G and πX : X → X/G be the GIT quotient maps. The
fundamental lemma says that in this situation, there exists a Zariski
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open neighbourhood U ⊂ Y of y, of the form π−1Y (V ) for an open
neighbourhood V ⊂ Y/G of πY (y), such that the diagram

U
φ - X

V = U/G
?

φ- X/G
?

is Cartesian and the horizontal maps are étale.
The fundamental lemma concludes the proof of Luna's theorem:

The assumptions needed in the lemma are satis�ed by the map φ : G×Gx

W → An we have constructed. The proof is concluded by observing
that, since the open subset U ⊂ G×Gx W , produced by the fundamen-
tal lemma, is the inverse image of an open subset in W/Gx, it follows
that U has to be of the form G×Gx S for S ⊂ W Zariski open.

The fundamental lemma was originally stated and proved only un-
der the additional assumption thatX and Y are normal varieties. How-
ever, it can be proved quite directly, with no extra hypotheses needed.
Here is a sketch:3 Let X = SpecR and Y = SpecS and let the closed
orbits G · x and G · y correspond to ideals I ⊂ R and J ⊂ S. Thus the
image points πY (y) and πX(x) in the GIT quotients correspond to the
maximal ideals IG = I∩RG and JG = J∩SG. Morally, étale local prop-
erties can be read o� from completed local rings, so it is reasonable to
approach the fundamental lemma by �rst �taking completions� in the
diagram considered. Thus we consider the corresponding diagram of
k-algebras

(3.2)

S ⊗SG ŜG � R⊗RG R̂G

ŜG

6

� R̂G

6

where ŜG and R̂G are the completions of R and S with respect to the
maximal ideals JG and IG, i.e. the completed local rings of πY (y) and
πX(x). Now it turns out that the horizontal arrows in this diagram are
isomorphisms. From this the fundamental lemma can be deduced by
standard arguments.

It is not hard to see that the invariant ring of R ⊗RG R̂G is R̂G;
thus if the top arrow in (3.2) is an isomorphism, then so is the bottom
arrow. Establishing that the top arrow is an isomorphism is the main
point in the proof of the fundamental lemma. In outline, the argument
is as follows: From the étaleness of φ along the orbit G · y one can

3We follow Knop's appendix to the chapter by Slodowy in the book �Alge-

braische Transformationsgruppen und Invariantentheorie�, to which the reader is

referred for the details. According to Knop, the argument is a simpli�cation of an

unpublished proof also by Luna.



3. APPLICATIONS OF LUNA'S THEOREM 37

deduce that there is a canonical isomorphism

(3.3) lim
n
S/Jn ∼= lim

n
R/In

(these rings can be viewed as formal neighbourhoods of the orbits, so
this isomorphism is quite reasonable). Now, if R were �nite as a module
over RG, then extension of scalars would commute with limits, so we
would have

R⊗RG R̂G = R⊗RG (lim
n
RG/(IG)n)

∼= lim
n
R/(IG)nR.

A further use of the hypothetical �niteness would (more or less) show
that the �ltrations of R given by In and (IG)nR were compatible, in
the sense that the completions could be identi�ed. Thus we could
identify limR/In with R ⊗RG R̂G, and of course similarly for S and
J . By (3.3) we would conclude that the top horizontal arrow in (3.2)
were an isomorphism. Of course R is not necessarily �nite over RG,
and it is not true in general that limR/In is isomorphic to R⊗RG R̂G.
But the isotypical components R(λ) are �nite over RG by Theorem
2.11, and the argument just sketched can be applied to each isotypical
component separately, and this su�ces to conclude that the top arrow
in (3.2) is an isomorphism.

3. Applications of Luna's theorem

Theorem 3.1. Let G×X → X be an action satisfying the assump-
tions in Luna's Theorem 3.1. Assume that every closed point x ∈ X has
trivial stabilizer group Gx = 1. Then the GIT quotient π : X → X/G
is a principal G-bundle.

Note that, conversely, all stabilizer groups of a principal G-bundle
are trivial.

Proof. Let x ∈ X/G be a closed point, and choose a lifting x ∈ X
in the closed orbit in the �bre over x (in fact, all orbits are necessarily
closed, since a non closed orbit would have orbits with nontrivial sta-
bilizers in its closure). Let S ⊂ X be an étale slice through x. Since
the stabilizer group of x is trivial, the induced �bre bundle G×Gx S is
just the product G× S. Thus we have a Cartesian diagram

(3.1)

G× S φ- X

S
?

ψ- X/G
?

where ψ is étale, and φ is G-equivariant. This says that X → X/G is
a principal G-bundle. �
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Corollary 3.2. Situation as in the previous theorem. Assume in
addition that X is nonsingular. Then the quotient X/G is nonsingular.

Proof. In diagram (3.1), we may choose S to be nonsingular. But
then the existence of the étale map ψ : S → X/G shows that X/G is
nonsingular at the (arbitrarily chosen) point x. �

We remark that even with nontrivial stabilizers, it may well happen
that the quotient X/G is nonsingular. One �nds trivial examples by
replacing the G-action, with trivial stabilizers, with the induced action
of a group G′ with a surjective homomorphism G′ → G. A more
interesting example is the action of the symmetric group Sn on An by
permutation of the coordinates. It is well known that the invariant ring
is generated by the elementary symmetric functions, between which
there are no relations. Thus An/Sn

∼= An.

Theorem 3.3. Let G×X → X be an action satisfying the assump-
tions in Luna's Theorem 3.1. Let x ∈ X be a (closed) point with closed
orbit G ·x. Then there exists a Zariski open neighbourhood U of x such
that the stabilizer group Gy of every y ∈ U is conjugate to a subgroup
of Gx.

Proof. Let S be an étale slice through x, and, with notation as in
Luna's theorem, let U be the image of φ. The stabilizer group in G of
a point in G ×Gx S is equal to the stabilizer group of its image in X,
since the diagram in Luna's theorem is Cartesian. One checks easily
that the stabilizer group of a point (g, s) in G×Gx S equals

g(Gx)sg
−1

where (Gx)s ⊆ Gx denotes the stabilizer group of s under the Gx-action
on S. Hence, if y = gs, then

g−1Gyg = (Gx)s ⊆ Gx

and we are done. �

Corollary 3.4. Suppose in addition X is irreducible. There exists
an open dense subset U ⊂ X such that all stabilizer groups Gy for y ∈ U
are conjugate subgroups in G.

Proof. Choose x ∈ X such that its stabilizer group has minimal
dimension and, among those stabilizers with minimal dimension, the
minimal number of connected components. Now apply the previous
corollary, and note any closed subgroup of Gx would either have lower
dimension or the same dimension but fewer components. �

Note that the last corollary gives sense to the term �the generic
stabilizer group� as a conjugacy class of subgroups of G.


