
LAGRANGIAN FIBRATIONS ON GENERALIZEDKUMMER VARIETIESMARTIN G. GULBRANDSENAbstrat. We investigate the existene of Lagrangian �brationson the generalized Kummer varieties of Beauville. For a prini-pally polarized abelian surfae A of Piard number one we �ndthe following: The Kummer variety KnA is birationally equivalentto another irreduible sympleti variety admitting a Lagrangian�bration, if and only if n is a perfet square. And this is thease if and only if KnA arries a divisor with vanishing Beauville-Bogomolov square. 1. IntrodutionLet X denote a projetive irreduible sympleti variety of dimension
2n. We refer the reader to Huybrehts' exposition [6℄ for de�nitionsand general bakground material. Matsushita [8, 9, 10, 11℄ studied�brations of X, that is, proper maps(1) f : X → B,suh that a generi �bre is onneted and has positive dimension. As-suming B to be projetive and nonsingular, Matsushita showed thatevery omponent of every �bre of f is a Lagrangian subvariety of Xof dimension n, and every nonsingular �bre is an abelian variety. Fur-thermore, the base B is n-dimensional Fano and its Hodge numbersagree with those of Pn. It is a onjeture that B is in fat isomorphito Pn.The setup an be generalized slightly:De�nition 1.1. With X and B as above, a rational map

f : X 99K Bis a rational �bration of X over B if there exist another projetive irre-duible sympleti variety X ′ and a birational equivalene φ : X ′
9̃9KXsuh that the omposition f ◦ φ is a (regular) �bration of X ′ over B.A basi tool in the study of irreduible sympleti varieties is theBeauville-Bogomolov form, whih is an integral quadrati form q on

H2(X, Z), satisfying
q(α)n = c deg(α2n)for a positive real onstant c. A birational map between irreduiblesympleti varieties indues an isomorphism on H2(−, Z), ompatible1



2 MARTIN G. GULBRANDSENwith the Beauville-Bogomolov forms. It follows that in the situation ofDe�nition 1.1, the pullbak D = f ∗H of any divisor H on B satis�es
q(D) = 0. Conversely, one may ask:Question 1.2. Suppose X arries a nontrivial divisor D with vanishingBeauville-Bogomolov square. Does X admit a rational �bration over
Pn?One may try to answer the question for the known examples of pro-jetive irreduible sympleti varieties. There are two standard seriesof examples, both due to Beauville [1℄: The �rst is the Hilbert sheme
S[n] (of dimension 2n) parametrizing �nite subshemes of length n ofa K3 surfae S. The seond is the (generalized) Kummer variety KnA(of dimension 2n − 2) assoiated to an abelian surfae A, de�ned asthe �bre of the map(2) σ : A[n] → A.indued by the group law on A. The map σ is loally trivial in theétale topology, and in partiular all �bres are isomorphi. So there is noambiguity in this de�nition. Reently, Sawon [15℄ and Markushevih [7℄answered Question 1.2 in the a�rmative for the Hilbert sheme S[n] ofa generi K3 surfae. In this text, we onsider the ase of the Kummervarieties.To state our result, we need the notion of the dual divisor lass: If
C ∈ Pic(A) is an ample divisor lass, then there is a anonially de�neddual divisor lass Ĉ ∈ Pic(Â), whih is also ample, and the two divisors
C and Ĉ have the same self intersetions. A preise de�nition is givenin Example 2.4. With this notation, our result is the following:Theorem 1.3. Let A be an abelian surfae arrying an e�etive divisor
C ⊂ A with self intersetion 2n, where n > 2, and assume there existnonsingular irreduible urves in the linear system |Ĉ| on Â. Then theKummer variety KnA admits a rational �bration(3) f : KnA 99K |Ĉ| ∼= P

n−1.Remark 1.4. The assumption that |Ĉ| ontains nonsingular irreduibleurves is only used to verify that a generi �bre of f is onneted. Wewill see in Example 2.4 that this assumption is satis�ed whenever A isindeomposable, i.e. not a produt of ellipti urves, and also whenever
C is nonprimitive, i.e. divisible in the Néron-Severi group of A.The theorem is proved in Setion 3. We have the following orollary,whih answers Question 1.2 in the a�rmative for the Kummer varietiesassoiated to a generi prinipally polarized abelian surfae, and whihis proved in Setion 3.5:



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 3Corollary 1.5. If the abelian surfae A has Piard number one andadmits a prinipal polarization, then the following are equivalent, foreah n > 2:(1) The Kummer variety KnA admits a rational �bration over Pn−1.(2) KnA arries a divisor with vanishing Beauville-Bogomolov square.(3) n is a perfet square.The present work has been arried out independently of the worksof Sawon and Markushevih, but the onstrution is similar. How-ever, Sawon and Markushevih are able to answer Question 1.2 forthe Hilbert sheme of any (generi) K3 surfae, and their onstrutioninvolves a ertain moduli spae of twisted sheaves. In this text, weavoid twisted sheaves, but are only able to answer Question 1.2 for(generi) prinipally polarized abelian surfaes. It might be possible toextend the onstrution to arbitrary polarizations by adapting the useof twisted sheaves in the onstrution of Sawon and Markushevih.1I would like to thank Geir Ellingsrud for numerous fruitful disus-sions, and Manfred Lehn for introduing me to the question of existeneof Lagrangian �brations. 2. PreparationWe work in the ategory of noetherian shemes over C. By a map ofshemes we mean a morphism in this ategory. By a sheaf on a sheme
X we mean a oherent OX-module.If A is an abelian variety, we denote the identity element for thegroup law on A by 0, and if a is a point on A, we write Ta : A→ A fortranslation by a. We write Â for the dual abelian variety. We denote by
Px the homogeneous line bundle on A orresponding to a point x ∈ Â.If D is a divisor on A, we denote by

φD : A→ Âthe map that takes a point a ∈ A to the (invertible sheaf assoiated tothe) divisor T ∗

a D −D.We use the same symbol to denote a divisor on a variety, its lass inthe Piard group and its lass in the seond ohomology group.In this setion, we reall a few results from the literature on sheaveson abelian surfaes.2.1. The Fourier-Mukai transform. Let X → T be an abeliansheme over T , and let X̂ → T denote its dual abelian sheme. Let1After this paper was written, K. Yoshioka (arXiv:math.AG/0605190) answeredQuestion 1.2 a�rmatively for Kummer varieties of arbitrarily polarized abeliansurfaes. The proof uses twisted sheaves.



4 MARTIN G. GULBRANDSEN
P be the Poinaré line bundle on X ×T X̂, normalized suh that therestritions of P to X × 0 and 0× X̂ are trivial. Let

X
p
←− X ×T X̂

q
−→ X̂denote the two projetions.Following Mukai [12, 13℄, we de�ne a funtor Ŝ from the ategory of

OX-modules to the ategory of O bX-modules by
Ŝ(E) = q∗(p

∗(E)⊗ P).Reversing the roles of X an X̂, we get a funtor S taking anO bX-module
F to the OX-module

S(F) = p∗(q
∗(F)⊗ P).De�nition 2.1. An OX-module E satis�es the weak index theorem(WIT) with index i if

RpŜ(E) = 0 for all p 6= i.The Fourier-Mukai transform of suh a sheaf E is the O bX-module
Ê = RiŜ(E).For eah t ∈ T , we may view E ⊗ k(t) as a sheaf on the �bre Xt,whih is an abelian variety. We have the following base hange result:Theorem 2.2 (Mukai [13℄). Let E be a sheaf on X → T , �at over T .The lous of points t ∈ T suh that E ⊗ k(t) satis�es WIT is open. If

E ⊗ k(t) satis�es WIT with index i for all t ∈ T , then E also satis�esWIT with index i, Ê is �at over T and we have
̂E ⊗ k(t) ∼= Ê ⊗ k(t)for all t ∈ T .We will apply this only in the ase X = A×T , where A is an abeliansurfae, and view E as a family of sheaves on A parametrized by T .Mukai's disovery was the following:Theorem 2.3 (Mukai [12℄). Let A be an abelian variety of dimension

g. The funtor Ŝ indues an equivalene of derived ategories
RŜ : D(A)→ D(Â)with quasi-inverse taking a omplex K• to (−1)∗ARS(K•)[−g].In partiular, if E is a sheaf on A satisfying WIT with index i, then Êalso satis�es WIT, with index g−i, and we have a natural isomorphism

̂̂E ∼= (−1)∗AE .



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 5A similar statement holds when A is replaed with an arbitraryabelian sheme [13℄, but we will not need this.Mukai [13℄ also alulated the Chern harater inH∗(Â, Z) ofRŜ(K•)in terms of the Chern harater of the omplex K•: To state the result,reall that there is a anonial duality between the ohomology groupsof A and those of Â. Thus, using Poinaré duality, we may identify(4) Hp(Â, Z) ∼= H2g−p(A, Z).Writing chp for the 2p'th omponent of the Chern harater, and sup-pressing the isomorphism (4), Mukai found(5) chp(RŜ(K•)) = (−1)pchg−p(K•).In partiular, whenever E satis�es WIT with index i, we have(6) chp(Ê) = (−1)i+pchg−p(E).We remark that, on an abelian surfae, the omponents of the Chernharater are the rank, the �rst Chern lass and the Euler harateris-ti:
ch0(E) = r(E) ch1(E) = c1(E) ch2(E) = χ(E)Example 2.4. Let C ⊂ A be an e�etive divisor with positive selfintersetion on an abelian surfae. By a theorem of Mumford [14, �16℄,we have

Hp(A,Px(C)) = 0, for all p > 0 and all x ∈ Â.Hene, OA(C) satis�es WIT with index 0, and ÔA(C) is loally freeon Â. Applying formula (6), we see that ÔA(C) has rank equal to
χ(OA(C)) = C2/2 and Euler harateristi 1, whereas under the iso-morphism (4), we have

c1(ÔA(C)) = −C.Thus, de�ning Ĉ ∈ Pic(Â) to be the divisor lass suh that
O bA(−Ĉ) ∼= det ÔA(C),we see that the lasses of C and Ĉ in H2(−, Z) orrespond under theisomorphism (4).Note that the pullbak of ÔA(C) by the map φC : A→ Â is [12℄

φ∗

C(ÔA(C)) = OA(−C)⊕dwhere d = C2/2, whih is also the degree of φC . It follows that
φ∗

C(Ĉ) = dC.Consequently, Ĉ is ample, and its self intersetion is Ĉ2 = C2.We also note that, by Bertini's theorem, the assumption in Theorem1.3, that |Ĉ| ontains nonsingular irreduible urves, is automatially



6 MARTIN G. GULBRANDSENsatis�ed unless |Ĉ| has base points. This an only happen if both Ĉ isindivisible in H2(Â, Z) [14, �6, �16℄ and Â is a produt of ellipti urves[2, �10.1℄. This proves the laim in Remark 1.4, sine C is divisible ifand only if Ĉ is, and A is a produt if and only if Â is.2.2. Moduli of sheaves on an abelian surfae. Let A be an abeliansurfae and �x a polarization H. By a (semi-) stable sheaf on A wewill mean a Gieseker (semi-) stable sheaf with respet to H. Fixing arank r ≥ 0, �rst Chern lass c1 ∈ NS(A) and Euler harateristi χ,we denote by MA(r, c1, χ) the Simpson moduli spae of stable sheaveswith the given invariants. In the ases of interest to us, stability andsemi-stability will be equivalent, so that MA(r, c1, χ) is going to beprojetive.We will in fat only onsider sheaves of rank one or zero, so wenote that every torsion free sheaf of rank one is stable, whereas in therank zero ase, Riemann-Roh gives the following ondition: A pureone-dimensional sheaf E on A is stable if and only if we have(7) χ(F)

degH(F)
<

χ(E)

degH(E)for every nontrivial proper subsheaf F ⊂ E .Yoshioka [16℄ de�nes a (regular) map(8) α : MA(r, c1, χ)→ A× Âthat an be desribed at the level of sets as follows, exept that we takethe liberty to make a sign hange: Choose a representative L ∈ Pic(A)in the lass c1, and also a representative L′ ∈ Pic(Â) in the lassorresponding to c1 via Poinaré duality (4). Then de�ne α = (δ, δ̂),where
δ(F) = det(RŜ(F))−1 ⊗ L′−1

δ̂(F) = det(F)⊗ L−1.Note that δ̂(F) is an element of Pic0(A) = Â and, by equation (5),
δ(F) is an element of Pic0(Â) = A.Theorem 2.5 (Yoshioka [16℄). Assume the triple (r, c1, χ) is primitivein the even ohomology ⊕

i H
2i(A, Z) and that semi-stability and sta-bility are equivalent onditions on a sheaf with these invariants. Fur-thermore assume the polarization H is generi. If the dimension of

MA(r, c1, χ) is at least 8, then(1) MA(r, c1, χ) is deformation equivalent to A[n] × Â for suitable
n.(2) The map α in (8) is loally trivial in the étale topology.



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 7(3) A �bre KA(r, c1, χ) of the map α is deformation equivalent tothe Kummer variety KnA. In partiular, KA(r, c1, χ) is an ir-reduible sympleti variety.As we will be free to hoose the polarization H arbitrarily, the gener-iity hypothesis will not be of importane to us. We remark, however,that in the ase where A has Piard number one, every polarization isgeneri.2.3. The Beauville-Bogomolov form on Kummer varieties. Beauville[1℄ has determined expliitly the seond ohomology group of a Kum-mer variety, together with the Beauville-Bogomolov form on it. Seealso Britze [4, Proposition 1℄ or Yoshioka [16, Setion 4.3.1℄ for thealulation of the Beauville-Bogomolov form.Firstly, there is a anonial monomorphism(9) H2(A, C)→ H2(KnA, C)whih is ompatible with the Hodge struture. Seondly, there is aprimitive integral lass ǫ ∈ H2(KnA, C) suh that 2ǫ is the fundamentallass of the lous E ⊂ KnA onsisting of nonredued subshemes. Thus
ǫ is a (1, 1)-lass. Together, H2(A, C) and ǫ generate H2(KnA, C). Infat, we have:Proposition 2.6. There is a diret sum deomposition

H2(KnA, C) ∼= H2(A, C)⊕ Cǫwhih is orthogonal with respet to the Beauville-Bogomolov form q.Furthermore, the restrition of q to H2(A, C) is the intersetion formon A, whereas
q(ǫ) = −2n.We are interested in lasses in H2(KnA, C) oming from divisors,that is, the Néron-Severi group NS(KnA). Sine the inlusion (9) isompatible with the Hodge struture, and ǫ is a primitive (1, 1)-lass,we �nd(10) NS(KnA) ∼= NS(A)⊕ Zǫ,by the Lefshetz theorem on (1, 1)-lasses.3. ConstrutionConsider the setup of Theorem 1.3, that is, we have a urve C ⊂ Awith self intersetion 2n on an abelian surfae A.To onstrut the �bration in Theorem 1.3, we want to assoiate toeah ξ ∈ A[n] a urve in a ertain linear system. As a �rst try, one mightask whether there exists a urve in the linear system |C| ontaining ξ.This turns out to be too restritive:



8 MARTIN G. GULBRANDSENLemma 3.1. A generi element ξ ∈ A[n] is not ontained in any urvein the linear system |C|.Proof. As we have seen in Example 2.4, we have
Hp(A,OA(C)) = 0 for all p > 0and thus, by Riemann Roh,

dim H0(A,OA(C)) = χ(OA(C)) = n.Thus the omplete linear system |C| has dimension n − 1. It followsthat the set of subshemes ξ ∈ A[n] ontained in a urve in |C| formsa family of dimension 2n − 1. (If |C| ontains singular or nonreduedurves, this is not entirely obvious, but follows from Briançon's result[3℄ that the family of length k subshemes supported at a �xed pointon a surfae has dimension k − 1. In any ase, for our purpose it issu�ient that the family of redued subshemes ξ ontained in a urvein |C| has dimension 2n − 1, whih is lear.) On the other hand, A[n]has dimension 2n. �Let us, starting from the observation in the lemma, sketh our on-strution: By allowing not only urves in |C|, but in the linear systemsassoiated to Px(C) for any x ∈ Â, we see that we �win� two more de-grees of freedom: The set of length n subshemes ontained in a urvein |Px(C)|, for some x ∈ Â, forms a family of dimension 2n + 1. Sine,again, A[n] has dimension 2n, we expet the lous(11) Dξ = {x ∈ Â H0(A, Iξ ⊗ Px(C)) 6= 0}to be a urve. We will see that this is indeed true for generi ξ, andfurthermore, when ξ is a generi element of the Kummer variety KnA,the urve Dξ belongs to the linear system |Ĉ|. The �bration f inTheorem 1.3 is given by sending ξ to Dξ.More preisely we will see that, for generi ξ ∈ KnA, the sheaf Iξ(C)satis�es WIT with index 1. Sending ξ to the Fourier-Mukai transform
Îξ(C) indues a birational equivalene(12) KnA9̃9KK bA(0, Ĉ,−1)where the target spae is the sympleti variety introdued in Yosh-ioka's Theorem 2.5. The sheaves parametrized by K bA(0, Ĉ,−1) aresupported on urves in the linear system |Ĉ|, and sending a sheaf toits support de�nes a map(13) K bA(0, Ĉ,−1)→ |Ĉ|.The omposition of the two maps (12) and (13) again gives us the�bration of Theorem 1.3. We remark that the support of Îξ(C) is



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 9preisely the urve Dξ in (11). In fat, the �bres of Îξ(C) are thevetor spaes
Îξ(C)⊗ k(x) ∼= H1(A, Iξ ⊗ Px(C))whih vanish preisely when H0(A, Iξ ⊗Px(C)) vanish, sine both theEuler harateristi and the seond ohomology of Iξ ⊗ Px(C) is zero.It turns out to be onvenient to extend the setup as follows: We will�rst see that there is a natural identi�ation A[n]× Â ∼= MA(1, C, 0) insuh a way that the Kummer variety is reovered as the �bres of themap

α : MA(1, C, 0)→ A× Âintrodued in Setion 2.2. Then we will onstrut a ommutative dia-gram(14) MA(1, [C], 0)
Ψ

9̃9KM bA(0, Ĉ,−1)
F
−−−→ Pyα

yα

y

A× Â
η

−̃→ Â× A
q

−−−→ Awhere Ψ is a birational map indued by the Fourier-Mukai transform,
η is an isomorphism, q denotes seond projetion and P → A is aprojetive bundle with the omplete linear system assoiated to Pa(Ĉ)as �bre over a. Choosing ompatible base points in the lower row, andrestriting the upper row to the respetive �bres, we reover the maps(12) and (13).3.1. Rank one sheaves and the Hilbert sheme. As usual, A[n]an be regarded as a moduli spae of rank one sheaves on A. Morepreisely, there is an isomorphism(15) A[n] × Â ∼= MA(1, 0,−n)whih, on the level of sets, is given by the map

(ξ, x) 7→ Iξ ⊗ Px.By twisting with C, we an furthermore identify MA(1, 0,−n) with
MA(1, C, 0). Inluding the isomorphism (15), we an thus identify

A[n] × Â ∼= MA(1, C, 0).We want to desribe the omposition
A[n] × Â ∼= MA(1, C, 0)

α
−→ A× Âwhere α is the map (8) of Yoshioka. Reall that to de�ne α, we musthoose invertible sheaves L and L′ representing c1 = C on A and on

Â, respetively. By Example 2.4, we have the natural hoies
L = OA(C) L′ = O bA(Ĉ),



10 MARTIN G. GULBRANDSENand then we have:Lemma 3.2. The diagram
A[n] × Â ∼= MA(1, C, 0)yσ×1 bA

yα

A× Â
θ

−−−→ A× Âis ommutative, where θ is the isomorphism
θ(a, x) = (a + φ bC(x), x).In partiular, the �bres KnA on the left are taken isomorphially to the�bres KA(1, C, 0) on the right.Proof. Let us, for the sake of readability, use additive notation in thePiard groups. Firstly, we have

δ̂(Iξ ⊗ Px(C)) = det(Iξ ⊗ Px(C)) +OA(−C) = Px.Seondly, applying the Fourier-Mukai funtor to the short exat se-quene(16) 0→ Iξ ⊗ Px(C)→ Px(C)→ Oξ → 0we obtain an exat sequene
0→ Ŝ(Iξ ⊗ Px(C))→ Ŝ(Px(C))→ Ŝ(Oξ)→ R1Ŝ(Iξ ⊗ Px(C))→ 0,sine Px(C) satis�es WIT with index 0, as in Example 2.4. Thus wehave

δ(Iξ ⊗ Px(C)) = − det Ŝ(Px(C)) + det Ŝ(Oξ) +O bA(−Ĉ).To determine det Ŝ(Px(C)), apply the fat [12, �3℄ that tensoring with
Px before applying Ŝ is the same thing as translating with x afterapplying Ŝ. Hene

det Ŝ(Px(C)) = O bA(−T ∗

x Ĉ)by the de�nition of Ĉ in Example 2.4.To alulate det Ŝ(Oξ), note that, whenever η ⊂ ξ is a subsheme oflength n− 1, we have an exat sequene
0→ k(a)→ Oξ → Oη → 0where ξ = η + a as yles on A. The indued exat sequene

0→ Pa → Ŝ(Oξ)→ Ŝ(Oη)→ 0shows that det Ŝ(Oξ) = det Ŝ(Oη) +Pa. By indution on the length of
ξ, we �nd

det Ŝ(Oξ) = Pσ(ξ)where σ is the summation map (2).



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 11We have thus shown that
δ(Iξ ⊗ Pσ(ξ)(C)) = Pσ(ξ) +O bA(T ∗

x Ĉ − Ĉ).More onisely, we may write this as
α(Iξ ⊗ Px(C)) = (σ(ξ) + φ bC(x), x).whih is what we wanted to prove. �3.2. The weak index property.Lemma 3.3. The (open) lous of sheaves E ∈ MA(1, C, 0) satisfyingWIT with index 1 is nonempty. In fat, there exist WIT-sheaves inevery �bre KA(1, C, 0) of α.Proof. The operations of translation and twisting by a homogeneousline bundle

E 7→ T ∗

aE , E 7→ E ⊗ Pxare essentially exhanged by the Fourier-Mukai funtor [12, �3℄, andhene do not a�et the WITness of a sheaf E . Thus, it is enough toprove the existene of a WIT-sheaf in MA(1, C, 0), sine we an movesuh a sheaf to any �bre of α by translating and twisting.Let E = Iξ(C). We have
H2(A, Iξ(C)⊗ Px) = 0for all x ∈ Â, for instane by the short exat sequene (16), so R2Ŝ(Iξ(C)) =

0. Furthermore, by Lemma 3.1, we have
H0(A, Iξ(C)) = 0for generi ξ. But Ŝ(Iξ(C)) is torsion free, hene we onlude that

Ŝ(Iξ(C)) = 0 for generi ξ. Thus Iξ(C) satis�es WIT with index
1. �3.3. Stability.Lemma 3.4. Let E be a sheaf in MA(1, C, 0) satisfying WIT with index
1. Then the Fourier-Mukai transform Ê is stable with respet to anypolarization of Â.Proof. We �rst show that Ê is pure. Being the Fourier-Mukai transformof a WIT-sheaf with index 1, Ê itself satis�es WIT with index 1. It hasrank zero and �rst Chern lass Ĉ 6= 0, hene it is one-dimensional. If
T ⊂ Ê is a zero-dimensional subsheaf, then T satis�es WIT with index
0, but

S(T ) ⊆ S(Ê) = 0and hene T = 0. Thus Ê is pure of dimension 1.Suppose F ⊂ Ê were a destabilizing subsheaf. Then F also satis�esWIT with index 1.



12 MARTIN G. GULBRANDSENAs Ê/F is torsion, its degree is nonnegative, so we have
deg(F) ≤ deg(Ê)with respet to any polarization of Â. On the other hand, sine F isdestabilizing, we have by (7)
χ(F)

deg(F)
>

χ(Ê)

deg(Ê)and thus
χ(F) > χ(Ê) = −1.Sine the Fourier-Mukai transform F̂ has rank −χ(F) < 1 by equa-tion (6), it must be a torsion sheaf. Now, applying the Fourier-Mukaifuntor to the exat sequene

0→ F → Ê → Ê/F → 0we obtain a left exat sequene
0→ S(Ê/F)→ F̂ → ̂̂E ∼= (−1)∗Ewhere Theorem 2.3 is applied to obtain the isomorphism on the right.But both S(Ê/F) and (−1)∗E are torsion free, hene it is impossible forthe middle term F̂ to be torsion. Thus we have reahed a ontradition.

�We are now ready to onstrut the leftmost square in diagram (14):Let U ⊂ MA(1, C, 0) denote the set of sheaves satisfying WIT withindex 1. Then U is open and nonempty, by Theorem 2.2 and Lemma3.3. Let U denote the restrition of the universal family on MA(1, C, 0)to U . Applying Theorem 2.2 again, U satis�es WIT with index 1,and its Fourier-Mukai transform Û is a �at family of sheaves on Âparametrized by U . The �bres of Û are stable by Lemma 3.4, andby equation (6) they have rank one, �rst Chern lass Ĉ and Eulerharateristi −1. Thus there is an indued rational map
Ψ: MA(1, C, 0) 99K M bA(0, Ĉ,−1)whih is regular on U . In fat, by Theorem 2.3, the restrition of Ψ to Uis an open immersion. It follows that Ψ is birational, as M bA(0, Ĉ,−1)is irreduible by Theorem 2.5. Let us verify that Ψ �ts into the diagram(14), i.e. we hek the ommutativity of the leftmost square. So let Ebe a sheaf in MA(1, C, 0) satisfying WIT with index 1. Then

δ(E) = det(Ê)⊗O bA(−Ĉ)

δ̂(E) = det(E)⊗OA(−C)
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δ(Ê) = det(̂̂E )⊗OA(−C) = (−1)∗A det(E)⊗OA(−C)

δ̂(Ê) = det(Ê)⊗O bA(−Ĉ).Thus we see that, de�ning the map η in diagram (14) by
η(a, x) = (−x, a) + ((−1)∗C − C, 0),the left square in that diagram ommutes. Sine, by Lemma 3.3, no�bre KA(1, C, 0) of α is ontained in the base lous of Ψ, we onludethat Ψ restrits to a birational equivalene(17) Φ: KA(1, C, 0)9̃9KK bA(0, Ĉ,−1).3.4. The �bration. Let G denote the Fourier-Mukai transform of

O bA(Ĉ). By the base hange theorem in ohomology, the �bre of Gover a ∈ A is anonially isomorphi to H0(Â,Pa(Ĉ)). Thus, the asso-iated projetive bundle(18) P = P (G∨)→ Ahas the omplete linear systems assoiated to Pa(Ĉ) as �bres.The Fitting ideal of a sheaf F in M bA(0, Ĉ,−1) de�nes a urve rep-resenting the �rst Chern lass of F , and hene a point in the bundle
P . The map of sets(19) F : M bA(0, Ĉ,−1)→ Pthus obtained is in fat a (regular) map of varieties, sine formationof the Fitting ideal ommutes with base hange. Clearly, F �ts intodiagram (14), making its rightmost square ommute. Thus, restriting
F to the �bre K bA(0, Ĉ,−1) above zero in Â× A, we �nd a map(20) f : K bA(0, Ĉ,−1)→ |Ĉ|.We laim that f is a �bration, i.e. a generi �bre is onneted. Forthis, let D ∈ |Ĉ| be a nonsingular urve. Viewing D as a point in P , the�bre F−1(D) is just the Jaobian Jn−1 of D, parametrizing invertiblesheaves of degree n − 1 on D. The restrition of α to Jn−1 an beidenti�ed with the summation map(21) Jn−1 → Asending a divisor ∑

nipi on D to the point ∑
nipi on A, using thegroup law on A. Thus, the �bre of f above D equals a �bre of the map(21). It follows from D being ample that suh a �bre is onneted.This onludes the proof of Theorem 1.3.



14 MARTIN G. GULBRANDSEN3.5. Prinipally polarized surfaes. Let us prove Corollary 1.5.Thus we assume (A,H) is a prinipally polarized abelian surfae withPiard number one.The impliation (1) =⇒ (2) is automati, as explained in the in-trodution. For the impliation (2) =⇒ (3), suppose KnA admits adivisor D with vanishing Beauville-Bogomolov square, orrespondingto rH + sǫ under the isomorphism (10), where r and s denote integers.Then
0 = q(D) = (rH)2 + s2q(ǫ) = 2r2 − 2s2nfrom whih it is immediate that n is a perfet square.Finally, the impliation (3) =⇒ (1) follows from Theorem 1.3:If n = m2 is a perfet square, the e�etive urve C = mH has selfintersetion 2n, and hene the theorem applies. The orollary is proved.4. On the base lousAgain let (A,H) be a prinipally polarized abelian surfae, and let

C = mH and n = m2. Then there does exist ξ ∈ A[n] suh that Iξ(C)fails WIT: It is easy to hek that this is the ase whenever ξ ∈ A[n] isontained in some translate T−1
a (H) of the polarization.In the �rst nontrivial ase n = 4, assuming the Piard number of Ais one, the author has heked [5℄ that the base lous of the map Φ inequation 17 is exatly the lous of sheaves failing WIT. Furthermore,this lous has the struture of a P2-bundle Q over A. By a arefulstudy of the map Φ one an show that the base lous of the �brationin Theorem 1.3 is the same lous Q. It seems likely that Φ is in fatthe Mukai elementary transform along Q.Referenes1. Arnaud Beauville, Variétés Kähleriennes dont la première lasse de Chern estnulle, J. Di�erential Geom. 18 (1983), no. 4, 755�782 (1984).2. C. Birkenhake and H. Lange, Complex abelian varieties, seond ed.,Grundlehren der Mathematishen Wissenshaften [Fundamental Priniples ofMathematial Sienes℄, vol. 302, Springer-Verlag, Berlin, 2004.3. Joël Briançon, Desription de HilbnC{x, y}, Invent. Math. 41 (1977), no. 1,45�89.4. Mihael Britze, On the ohomology of generalized Kummer varieties, Ph.D.thesis, Universität zu Köln, 2002.5. Martin Gulbrandsen, Fibrations on generalized Kummer varieties, Ph.D. thesis,University of Oslo, 2006.6. Daniel Huybrehts, Compat hyperkähler manifolds, Calabi-Yau manifolds andrelated geometries, Universitext, Springer-Verlag, Berlin, 2003, Letures fromthe Summer Shool held in Nordfjordeid, June 2001, pp. 161�225.7. Dimitri Markushevih, Rational Lagrangian �brations on puntual Hilbertshemes of K3 surfaes, arXiv:math.AG/0509346.8. Daisuke Matsushita, On �bre spae strutures of a projetive irreduible sym-pleti manifold, Topology 38 (1999), no. 1, 79�83.
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