
LAGRANGIAN FIBRATIONS ON GENERALIZEDKUMMER VARIETIESMARTIN G. GULBRANDSENAbstra
t. We investigate the existen
e of Lagrangian �brationson the generalized Kummer varieties of Beauville. For a prin
i-pally polarized abelian surfa
e A of Pi
ard number one we �ndthe following: The Kummer variety KnA is birationally equivalentto another irredu
ible symple
ti
 variety admitting a Lagrangian�bration, if and only if n is a perfe
t square. And this is the
ase if and only if KnA 
arries a divisor with vanishing Beauville-Bogomolov square. 1. Introdu
tionLet X denote a proje
tive irredu
ible symple
ti
 variety of dimension
2n. We refer the reader to Huybre
hts' exposition [6℄ for de�nitionsand general ba
kground material. Matsushita [8, 9, 10, 11℄ studied�brations of X, that is, proper maps(1) f : X → B,su
h that a generi
 �bre is 
onne
ted and has positive dimension. As-suming B to be proje
tive and nonsingular, Matsushita showed thatevery 
omponent of every �bre of f is a Lagrangian subvariety of Xof dimension n, and every nonsingular �bre is an abelian variety. Fur-thermore, the base B is n-dimensional Fano and its Hodge numbersagree with those of Pn. It is a 
onje
ture that B is in fa
t isomorphi
to Pn.The setup 
an be generalized slightly:De�nition 1.1. With X and B as above, a rational map

f : X 99K Bis a rational �bration of X over B if there exist another proje
tive irre-du
ible symple
ti
 variety X ′ and a birational equivalen
e φ : X ′
9̃9KXsu
h that the 
omposition f ◦ φ is a (regular) �bration of X ′ over B.A basi
 tool in the study of irredu
ible symple
ti
 varieties is theBeauville-Bogomolov form, whi
h is an integral quadrati
 form q on

H2(X, Z), satisfying
q(α)n = c deg(α2n)for a positive real 
onstant c. A birational map between irredu
iblesymple
ti
 varieties indu
es an isomorphism on H2(−, Z), 
ompatible1



2 MARTIN G. GULBRANDSENwith the Beauville-Bogomolov forms. It follows that in the situation ofDe�nition 1.1, the pullba
k D = f ∗H of any divisor H on B satis�es
q(D) = 0. Conversely, one may ask:Question 1.2. Suppose X 
arries a nontrivial divisor D with vanishingBeauville-Bogomolov square. Does X admit a rational �bration over
Pn?One may try to answer the question for the known examples of pro-je
tive irredu
ible symple
ti
 varieties. There are two standard seriesof examples, both due to Beauville [1℄: The �rst is the Hilbert s
heme
S[n] (of dimension 2n) parametrizing �nite subs
hemes of length n ofa K3 surfa
e S. The se
ond is the (generalized) Kummer variety KnA(of dimension 2n − 2) asso
iated to an abelian surfa
e A, de�ned asthe �bre of the map(2) σ : A[n] → A.indu
ed by the group law on A. The map σ is lo
ally trivial in theétale topology, and in parti
ular all �bres are isomorphi
. So there is noambiguity in this de�nition. Re
ently, Sawon [15℄ and Markushevi
h [7℄answered Question 1.2 in the a�rmative for the Hilbert s
heme S[n] ofa generi
 K3 surfa
e. In this text, we 
onsider the 
ase of the Kummervarieties.To state our result, we need the notion of the dual divisor 
lass: If
C ∈ Pic(A) is an ample divisor 
lass, then there is a 
anoni
ally de�neddual divisor 
lass Ĉ ∈ Pic(Â), whi
h is also ample, and the two divisors
C and Ĉ have the same self interse
tions. A pre
ise de�nition is givenin Example 2.4. With this notation, our result is the following:Theorem 1.3. Let A be an abelian surfa
e 
arrying an e�e
tive divisor
C ⊂ A with self interse
tion 2n, where n > 2, and assume there existnonsingular irredu
ible 
urves in the linear system |Ĉ| on Â. Then theKummer variety KnA admits a rational �bration(3) f : KnA 99K |Ĉ| ∼= P

n−1.Remark 1.4. The assumption that |Ĉ| 
ontains nonsingular irredu
ible
urves is only used to verify that a generi
 �bre of f is 
onne
ted. Wewill see in Example 2.4 that this assumption is satis�ed whenever A isinde
omposable, i.e. not a produ
t of ellipti
 
urves, and also whenever
C is nonprimitive, i.e. divisible in the Néron-Severi group of A.The theorem is proved in Se
tion 3. We have the following 
orollary,whi
h answers Question 1.2 in the a�rmative for the Kummer varietiesasso
iated to a generi
 prin
ipally polarized abelian surfa
e, and whi
his proved in Se
tion 3.5:



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 3Corollary 1.5. If the abelian surfa
e A has Pi
ard number one andadmits a prin
ipal polarization, then the following are equivalent, forea
h n > 2:(1) The Kummer variety KnA admits a rational �bration over Pn−1.(2) KnA 
arries a divisor with vanishing Beauville-Bogomolov square.(3) n is a perfe
t square.The present work has been 
arried out independently of the worksof Sawon and Markushevi
h, but the 
onstru
tion is similar. How-ever, Sawon and Markushevi
h are able to answer Question 1.2 forthe Hilbert s
heme of any (generi
) K3 surfa
e, and their 
onstru
tioninvolves a 
ertain moduli spa
e of twisted sheaves. In this text, weavoid twisted sheaves, but are only able to answer Question 1.2 for(generi
) prin
ipally polarized abelian surfa
es. It might be possible toextend the 
onstru
tion to arbitrary polarizations by adapting the useof twisted sheaves in the 
onstru
tion of Sawon and Markushevi
h.1I would like to thank Geir Ellingsrud for numerous fruitful dis
us-sions, and Manfred Lehn for introdu
ing me to the question of existen
eof Lagrangian �brations. 2. PreparationWe work in the 
ategory of noetherian s
hemes over C. By a map ofs
hemes we mean a morphism in this 
ategory. By a sheaf on a s
heme
X we mean a 
oherent OX-module.If A is an abelian variety, we denote the identity element for thegroup law on A by 0, and if a is a point on A, we write Ta : A→ A fortranslation by a. We write Â for the dual abelian variety. We denote by
Px the homogeneous line bundle on A 
orresponding to a point x ∈ Â.If D is a divisor on A, we denote by

φD : A→ Âthe map that takes a point a ∈ A to the (invertible sheaf asso
iated tothe) divisor T ∗

a D −D.We use the same symbol to denote a divisor on a variety, its 
lass inthe Pi
ard group and its 
lass in the se
ond 
ohomology group.In this se
tion, we re
all a few results from the literature on sheaveson abelian surfa
es.2.1. The Fourier-Mukai transform. Let X → T be an abelians
heme over T , and let X̂ → T denote its dual abelian s
heme. Let1After this paper was written, K. Yoshioka (arXiv:math.AG/0605190) answeredQuestion 1.2 a�rmatively for Kummer varieties of arbitrarily polarized abeliansurfa
es. The proof uses twisted sheaves.



4 MARTIN G. GULBRANDSEN
P be the Poin
aré line bundle on X ×T X̂, normalized su
h that therestri
tions of P to X × 0 and 0× X̂ are trivial. Let

X
p
←− X ×T X̂

q
−→ X̂denote the two proje
tions.Following Mukai [12, 13℄, we de�ne a fun
tor Ŝ from the 
ategory of

OX-modules to the 
ategory of O bX-modules by
Ŝ(E) = q∗(p

∗(E)⊗ P).Reversing the roles of X an X̂, we get a fun
tor S taking anO bX-module
F to the OX-module

S(F) = p∗(q
∗(F)⊗ P).De�nition 2.1. An OX-module E satis�es the weak index theorem(WIT) with index i if

RpŜ(E) = 0 for all p 6= i.The Fourier-Mukai transform of su
h a sheaf E is the O bX-module
Ê = RiŜ(E).For ea
h t ∈ T , we may view E ⊗ k(t) as a sheaf on the �bre Xt,whi
h is an abelian variety. We have the following base 
hange result:Theorem 2.2 (Mukai [13℄). Let E be a sheaf on X → T , �at over T .The lo
us of points t ∈ T su
h that E ⊗ k(t) satis�es WIT is open. If

E ⊗ k(t) satis�es WIT with index i for all t ∈ T , then E also satis�esWIT with index i, Ê is �at over T and we have
̂E ⊗ k(t) ∼= Ê ⊗ k(t)for all t ∈ T .We will apply this only in the 
ase X = A×T , where A is an abeliansurfa
e, and view E as a family of sheaves on A parametrized by T .Mukai's dis
overy was the following:Theorem 2.3 (Mukai [12℄). Let A be an abelian variety of dimension

g. The fun
tor Ŝ indu
es an equivalen
e of derived 
ategories
RŜ : D(A)→ D(Â)with quasi-inverse taking a 
omplex K• to (−1)∗ARS(K•)[−g].In parti
ular, if E is a sheaf on A satisfying WIT with index i, then Êalso satis�es WIT, with index g−i, and we have a natural isomorphism

̂̂E ∼= (−1)∗AE .



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 5A similar statement holds when A is repla
ed with an arbitraryabelian s
heme [13℄, but we will not need this.Mukai [13℄ also 
al
ulated the Chern 
hara
ter inH∗(Â, Z) ofRŜ(K•)in terms of the Chern 
hara
ter of the 
omplex K•: To state the result,re
all that there is a 
anoni
al duality between the 
ohomology groupsof A and those of Â. Thus, using Poin
aré duality, we may identify(4) Hp(Â, Z) ∼= H2g−p(A, Z).Writing chp for the 2p'th 
omponent of the Chern 
hara
ter, and sup-pressing the isomorphism (4), Mukai found(5) chp(RŜ(K•)) = (−1)pchg−p(K•).In parti
ular, whenever E satis�es WIT with index i, we have(6) chp(Ê) = (−1)i+pchg−p(E).We remark that, on an abelian surfa
e, the 
omponents of the Chern
hara
ter are the rank, the �rst Chern 
lass and the Euler 
hara
teris-ti
:
ch0(E) = r(E) ch1(E) = c1(E) ch2(E) = χ(E)Example 2.4. Let C ⊂ A be an e�e
tive divisor with positive selfinterse
tion on an abelian surfa
e. By a theorem of Mumford [14, �16℄,we have

Hp(A,Px(C)) = 0, for all p > 0 and all x ∈ Â.Hen
e, OA(C) satis�es WIT with index 0, and ÔA(C) is lo
ally freeon Â. Applying formula (6), we see that ÔA(C) has rank equal to
χ(OA(C)) = C2/2 and Euler 
hara
teristi
 1, whereas under the iso-morphism (4), we have

c1(ÔA(C)) = −C.Thus, de�ning Ĉ ∈ Pic(Â) to be the divisor 
lass su
h that
O bA(−Ĉ) ∼= det ÔA(C),we see that the 
lasses of C and Ĉ in H2(−, Z) 
orrespond under theisomorphism (4).Note that the pullba
k of ÔA(C) by the map φC : A→ Â is [12℄

φ∗

C(ÔA(C)) = OA(−C)⊕dwhere d = C2/2, whi
h is also the degree of φC . It follows that
φ∗

C(Ĉ) = dC.Consequently, Ĉ is ample, and its self interse
tion is Ĉ2 = C2.We also note that, by Bertini's theorem, the assumption in Theorem1.3, that |Ĉ| 
ontains nonsingular irredu
ible 
urves, is automati
ally



6 MARTIN G. GULBRANDSENsatis�ed unless |Ĉ| has base points. This 
an only happen if both Ĉ isindivisible in H2(Â, Z) [14, �6, �16℄ and Â is a produ
t of ellipti
 
urves[2, �10.1℄. This proves the 
laim in Remark 1.4, sin
e C is divisible ifand only if Ĉ is, and A is a produ
t if and only if Â is.2.2. Moduli of sheaves on an abelian surfa
e. Let A be an abeliansurfa
e and �x a polarization H. By a (semi-) stable sheaf on A wewill mean a Gieseker (semi-) stable sheaf with respe
t to H. Fixing arank r ≥ 0, �rst Chern 
lass c1 ∈ NS(A) and Euler 
hara
teristi
 χ,we denote by MA(r, c1, χ) the Simpson moduli spa
e of stable sheaveswith the given invariants. In the 
ases of interest to us, stability andsemi-stability will be equivalent, so that MA(r, c1, χ) is going to beproje
tive.We will in fa
t only 
onsider sheaves of rank one or zero, so wenote that every torsion free sheaf of rank one is stable, whereas in therank zero 
ase, Riemann-Ro
h gives the following 
ondition: A pureone-dimensional sheaf E on A is stable if and only if we have(7) χ(F)

degH(F)
<

χ(E)

degH(E)for every nontrivial proper subsheaf F ⊂ E .Yoshioka [16℄ de�nes a (regular) map(8) α : MA(r, c1, χ)→ A× Âthat 
an be des
ribed at the level of sets as follows, ex
ept that we takethe liberty to make a sign 
hange: Choose a representative L ∈ Pic(A)in the 
lass c1, and also a representative L′ ∈ Pic(Â) in the 
lass
orresponding to c1 via Poin
aré duality (4). Then de�ne α = (δ, δ̂),where
δ(F) = det(RŜ(F))−1 ⊗ L′−1

δ̂(F) = det(F)⊗ L−1.Note that δ̂(F) is an element of Pic0(A) = Â and, by equation (5),
δ(F) is an element of Pic0(Â) = A.Theorem 2.5 (Yoshioka [16℄). Assume the triple (r, c1, χ) is primitivein the even 
ohomology ⊕

i H
2i(A, Z) and that semi-stability and sta-bility are equivalent 
onditions on a sheaf with these invariants. Fur-thermore assume the polarization H is generi
. If the dimension of

MA(r, c1, χ) is at least 8, then(1) MA(r, c1, χ) is deformation equivalent to A[n] × Â for suitable
n.(2) The map α in (8) is lo
ally trivial in the étale topology.



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 7(3) A �bre KA(r, c1, χ) of the map α is deformation equivalent tothe Kummer variety KnA. In parti
ular, KA(r, c1, χ) is an ir-redu
ible symple
ti
 variety.As we will be free to 
hoose the polarization H arbitrarily, the gener-i
ity hypothesis will not be of importan
e to us. We remark, however,that in the 
ase where A has Pi
ard number one, every polarization isgeneri
.2.3. The Beauville-Bogomolov form on Kummer varieties. Beauville[1℄ has determined expli
itly the se
ond 
ohomology group of a Kum-mer variety, together with the Beauville-Bogomolov form on it. Seealso Britze [4, Proposition 1℄ or Yoshioka [16, Se
tion 4.3.1℄ for the
al
ulation of the Beauville-Bogomolov form.Firstly, there is a 
anoni
al monomorphism(9) H2(A, C)→ H2(KnA, C)whi
h is 
ompatible with the Hodge stru
ture. Se
ondly, there is aprimitive integral 
lass ǫ ∈ H2(KnA, C) su
h that 2ǫ is the fundamental
lass of the lo
us E ⊂ KnA 
onsisting of nonredu
ed subs
hemes. Thus
ǫ is a (1, 1)-
lass. Together, H2(A, C) and ǫ generate H2(KnA, C). Infa
t, we have:Proposition 2.6. There is a dire
t sum de
omposition

H2(KnA, C) ∼= H2(A, C)⊕ Cǫwhi
h is orthogonal with respe
t to the Beauville-Bogomolov form q.Furthermore, the restri
tion of q to H2(A, C) is the interse
tion formon A, whereas
q(ǫ) = −2n.We are interested in 
lasses in H2(KnA, C) 
oming from divisors,that is, the Néron-Severi group NS(KnA). Sin
e the in
lusion (9) is
ompatible with the Hodge stru
ture, and ǫ is a primitive (1, 1)-
lass,we �nd(10) NS(KnA) ∼= NS(A)⊕ Zǫ,by the Lefs
hetz theorem on (1, 1)-
lasses.3. Constru
tionConsider the setup of Theorem 1.3, that is, we have a 
urve C ⊂ Awith self interse
tion 2n on an abelian surfa
e A.To 
onstru
t the �bration in Theorem 1.3, we want to asso
iate toea
h ξ ∈ A[n] a 
urve in a 
ertain linear system. As a �rst try, one mightask whether there exists a 
urve in the linear system |C| 
ontaining ξ.This turns out to be too restri
tive:



8 MARTIN G. GULBRANDSENLemma 3.1. A generi
 element ξ ∈ A[n] is not 
ontained in any 
urvein the linear system |C|.Proof. As we have seen in Example 2.4, we have
Hp(A,OA(C)) = 0 for all p > 0and thus, by Riemann Ro
h,

dim H0(A,OA(C)) = χ(OA(C)) = n.Thus the 
omplete linear system |C| has dimension n − 1. It followsthat the set of subs
hemes ξ ∈ A[n] 
ontained in a 
urve in |C| formsa family of dimension 2n − 1. (If |C| 
ontains singular or nonredu
ed
urves, this is not entirely obvious, but follows from Briançon's result[3℄ that the family of length k subs
hemes supported at a �xed pointon a surfa
e has dimension k − 1. In any 
ase, for our purpose it issu�
ient that the family of redu
ed subs
hemes ξ 
ontained in a 
urvein |C| has dimension 2n − 1, whi
h is 
lear.) On the other hand, A[n]has dimension 2n. �Let us, starting from the observation in the lemma, sket
h our 
on-stru
tion: By allowing not only 
urves in |C|, but in the linear systemsasso
iated to Px(C) for any x ∈ Â, we see that we �win� two more de-grees of freedom: The set of length n subs
hemes 
ontained in a 
urvein |Px(C)|, for some x ∈ Â, forms a family of dimension 2n + 1. Sin
e,again, A[n] has dimension 2n, we expe
t the lo
us(11) Dξ = {x ∈ Â H0(A, Iξ ⊗ Px(C)) 6= 0}to be a 
urve. We will see that this is indeed true for generi
 ξ, andfurthermore, when ξ is a generi
 element of the Kummer variety KnA,the 
urve Dξ belongs to the linear system |Ĉ|. The �bration f inTheorem 1.3 is given by sending ξ to Dξ.More pre
isely we will see that, for generi
 ξ ∈ KnA, the sheaf Iξ(C)satis�es WIT with index 1. Sending ξ to the Fourier-Mukai transform
Îξ(C) indu
es a birational equivalen
e(12) KnA9̃9KK bA(0, Ĉ,−1)where the target spa
e is the symple
ti
 variety introdu
ed in Yosh-ioka's Theorem 2.5. The sheaves parametrized by K bA(0, Ĉ,−1) aresupported on 
urves in the linear system |Ĉ|, and sending a sheaf toits support de�nes a map(13) K bA(0, Ĉ,−1)→ |Ĉ|.The 
omposition of the two maps (12) and (13) again gives us the�bration of Theorem 1.3. We remark that the support of Îξ(C) is
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isely the 
urve Dξ in (11). In fa
t, the �bres of Îξ(C) are theve
tor spa
es
Îξ(C)⊗ k(x) ∼= H1(A, Iξ ⊗ Px(C))whi
h vanish pre
isely when H0(A, Iξ ⊗Px(C)) vanish, sin
e both theEuler 
hara
teristi
 and the se
ond 
ohomology of Iξ ⊗ Px(C) is zero.It turns out to be 
onvenient to extend the setup as follows: We will�rst see that there is a natural identi�
ation A[n]× Â ∼= MA(1, C, 0) insu
h a way that the Kummer variety is re
overed as the �bres of themap

α : MA(1, C, 0)→ A× Âintrodu
ed in Se
tion 2.2. Then we will 
onstru
t a 
ommutative dia-gram(14) MA(1, [C], 0)
Ψ

9̃9KM bA(0, Ĉ,−1)
F
−−−→ Pyα

yα

y

A× Â
η

−̃→ Â× A
q

−−−→ Awhere Ψ is a birational map indu
ed by the Fourier-Mukai transform,
η is an isomorphism, q denotes se
ond proje
tion and P → A is aproje
tive bundle with the 
omplete linear system asso
iated to Pa(Ĉ)as �bre over a. Choosing 
ompatible base points in the lower row, andrestri
ting the upper row to the respe
tive �bres, we re
over the maps(12) and (13).3.1. Rank one sheaves and the Hilbert s
heme. As usual, A[n]
an be regarded as a moduli spa
e of rank one sheaves on A. Morepre
isely, there is an isomorphism(15) A[n] × Â ∼= MA(1, 0,−n)whi
h, on the level of sets, is given by the map

(ξ, x) 7→ Iξ ⊗ Px.By twisting with C, we 
an furthermore identify MA(1, 0,−n) with
MA(1, C, 0). In
luding the isomorphism (15), we 
an thus identify

A[n] × Â ∼= MA(1, C, 0).We want to des
ribe the 
omposition
A[n] × Â ∼= MA(1, C, 0)

α
−→ A× Âwhere α is the map (8) of Yoshioka. Re
all that to de�ne α, we must
hoose invertible sheaves L and L′ representing c1 = C on A and on

Â, respe
tively. By Example 2.4, we have the natural 
hoi
es
L = OA(C) L′ = O bA(Ĉ),



10 MARTIN G. GULBRANDSENand then we have:Lemma 3.2. The diagram
A[n] × Â ∼= MA(1, C, 0)yσ×1 bA

yα

A× Â
θ

−−−→ A× Âis 
ommutative, where θ is the isomorphism
θ(a, x) = (a + φ bC(x), x).In parti
ular, the �bres KnA on the left are taken isomorphi
ally to the�bres KA(1, C, 0) on the right.Proof. Let us, for the sake of readability, use additive notation in thePi
ard groups. Firstly, we have

δ̂(Iξ ⊗ Px(C)) = det(Iξ ⊗ Px(C)) +OA(−C) = Px.Se
ondly, applying the Fourier-Mukai fun
tor to the short exa
t se-quen
e(16) 0→ Iξ ⊗ Px(C)→ Px(C)→ Oξ → 0we obtain an exa
t sequen
e
0→ Ŝ(Iξ ⊗ Px(C))→ Ŝ(Px(C))→ Ŝ(Oξ)→ R1Ŝ(Iξ ⊗ Px(C))→ 0,sin
e Px(C) satis�es WIT with index 0, as in Example 2.4. Thus wehave

δ(Iξ ⊗ Px(C)) = − det Ŝ(Px(C)) + det Ŝ(Oξ) +O bA(−Ĉ).To determine det Ŝ(Px(C)), apply the fa
t [12, �3℄ that tensoring with
Px before applying Ŝ is the same thing as translating with x afterapplying Ŝ. Hen
e

det Ŝ(Px(C)) = O bA(−T ∗

x Ĉ)by the de�nition of Ĉ in Example 2.4.To 
al
ulate det Ŝ(Oξ), note that, whenever η ⊂ ξ is a subs
heme oflength n− 1, we have an exa
t sequen
e
0→ k(a)→ Oξ → Oη → 0where ξ = η + a as 
y
les on A. The indu
ed exa
t sequen
e

0→ Pa → Ŝ(Oξ)→ Ŝ(Oη)→ 0shows that det Ŝ(Oξ) = det Ŝ(Oη) +Pa. By indu
tion on the length of
ξ, we �nd

det Ŝ(Oξ) = Pσ(ξ)where σ is the summation map (2).



LAGRANGIAN FIBRATIONS ON GENERALIZED KUMMER VARIETIES 11We have thus shown that
δ(Iξ ⊗ Pσ(ξ)(C)) = Pσ(ξ) +O bA(T ∗

x Ĉ − Ĉ).More 
on
isely, we may write this as
α(Iξ ⊗ Px(C)) = (σ(ξ) + φ bC(x), x).whi
h is what we wanted to prove. �3.2. The weak index property.Lemma 3.3. The (open) lo
us of sheaves E ∈ MA(1, C, 0) satisfyingWIT with index 1 is nonempty. In fa
t, there exist WIT-sheaves inevery �bre KA(1, C, 0) of α.Proof. The operations of translation and twisting by a homogeneousline bundle

E 7→ T ∗

aE , E 7→ E ⊗ Pxare essentially ex
hanged by the Fourier-Mukai fun
tor [12, �3℄, andhen
e do not a�e
t the WITness of a sheaf E . Thus, it is enough toprove the existen
e of a WIT-sheaf in MA(1, C, 0), sin
e we 
an movesu
h a sheaf to any �bre of α by translating and twisting.Let E = Iξ(C). We have
H2(A, Iξ(C)⊗ Px) = 0for all x ∈ Â, for instan
e by the short exa
t sequen
e (16), so R2Ŝ(Iξ(C)) =

0. Furthermore, by Lemma 3.1, we have
H0(A, Iξ(C)) = 0for generi
 ξ. But Ŝ(Iξ(C)) is torsion free, hen
e we 
on
lude that

Ŝ(Iξ(C)) = 0 for generi
 ξ. Thus Iξ(C) satis�es WIT with index
1. �3.3. Stability.Lemma 3.4. Let E be a sheaf in MA(1, C, 0) satisfying WIT with index
1. Then the Fourier-Mukai transform Ê is stable with respe
t to anypolarization of Â.Proof. We �rst show that Ê is pure. Being the Fourier-Mukai transformof a WIT-sheaf with index 1, Ê itself satis�es WIT with index 1. It hasrank zero and �rst Chern 
lass Ĉ 6= 0, hen
e it is one-dimensional. If
T ⊂ Ê is a zero-dimensional subsheaf, then T satis�es WIT with index
0, but

S(T ) ⊆ S(Ê) = 0and hen
e T = 0. Thus Ê is pure of dimension 1.Suppose F ⊂ Ê were a destabilizing subsheaf. Then F also satis�esWIT with index 1.



12 MARTIN G. GULBRANDSENAs Ê/F is torsion, its degree is nonnegative, so we have
deg(F) ≤ deg(Ê)with respe
t to any polarization of Â. On the other hand, sin
e F isdestabilizing, we have by (7)
χ(F)

deg(F)
>

χ(Ê)

deg(Ê)and thus
χ(F) > χ(Ê) = −1.Sin
e the Fourier-Mukai transform F̂ has rank −χ(F) < 1 by equa-tion (6), it must be a torsion sheaf. Now, applying the Fourier-Mukaifun
tor to the exa
t sequen
e

0→ F → Ê → Ê/F → 0we obtain a left exa
t sequen
e
0→ S(Ê/F)→ F̂ → ̂̂E ∼= (−1)∗Ewhere Theorem 2.3 is applied to obtain the isomorphism on the right.But both S(Ê/F) and (−1)∗E are torsion free, hen
e it is impossible forthe middle term F̂ to be torsion. Thus we have rea
hed a 
ontradi
tion.

�We are now ready to 
onstru
t the leftmost square in diagram (14):Let U ⊂ MA(1, C, 0) denote the set of sheaves satisfying WIT withindex 1. Then U is open and nonempty, by Theorem 2.2 and Lemma3.3. Let U denote the restri
tion of the universal family on MA(1, C, 0)to U . Applying Theorem 2.2 again, U satis�es WIT with index 1,and its Fourier-Mukai transform Û is a �at family of sheaves on Âparametrized by U . The �bres of Û are stable by Lemma 3.4, andby equation (6) they have rank one, �rst Chern 
lass Ĉ and Euler
hara
teristi
 −1. Thus there is an indu
ed rational map
Ψ: MA(1, C, 0) 99K M bA(0, Ĉ,−1)whi
h is regular on U . In fa
t, by Theorem 2.3, the restri
tion of Ψ to Uis an open immersion. It follows that Ψ is birational, as M bA(0, Ĉ,−1)is irredu
ible by Theorem 2.5. Let us verify that Ψ �ts into the diagram(14), i.e. we 
he
k the 
ommutativity of the leftmost square. So let Ebe a sheaf in MA(1, C, 0) satisfying WIT with index 1. Then

δ(E) = det(Ê)⊗O bA(−Ĉ)

δ̂(E) = det(E)⊗OA(−C)
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δ(Ê) = det(̂̂E )⊗OA(−C) = (−1)∗A det(E)⊗OA(−C)

δ̂(Ê) = det(Ê)⊗O bA(−Ĉ).Thus we see that, de�ning the map η in diagram (14) by
η(a, x) = (−x, a) + ((−1)∗C − C, 0),the left square in that diagram 
ommutes. Sin
e, by Lemma 3.3, no�bre KA(1, C, 0) of α is 
ontained in the base lo
us of Ψ, we 
on
ludethat Ψ restri
ts to a birational equivalen
e(17) Φ: KA(1, C, 0)9̃9KK bA(0, Ĉ,−1).3.4. The �bration. Let G denote the Fourier-Mukai transform of

O bA(Ĉ). By the base 
hange theorem in 
ohomology, the �bre of Gover a ∈ A is 
anoni
ally isomorphi
 to H0(Â,Pa(Ĉ)). Thus, the asso-
iated proje
tive bundle(18) P = P (G∨)→ Ahas the 
omplete linear systems asso
iated to Pa(Ĉ) as �bres.The Fitting ideal of a sheaf F in M bA(0, Ĉ,−1) de�nes a 
urve rep-resenting the �rst Chern 
lass of F , and hen
e a point in the bundle
P . The map of sets(19) F : M bA(0, Ĉ,−1)→ Pthus obtained is in fa
t a (regular) map of varieties, sin
e formationof the Fitting ideal 
ommutes with base 
hange. Clearly, F �ts intodiagram (14), making its rightmost square 
ommute. Thus, restri
ting
F to the �bre K bA(0, Ĉ,−1) above zero in Â× A, we �nd a map(20) f : K bA(0, Ĉ,−1)→ |Ĉ|.We 
laim that f is a �bration, i.e. a generi
 �bre is 
onne
ted. Forthis, let D ∈ |Ĉ| be a nonsingular 
urve. Viewing D as a point in P , the�bre F−1(D) is just the Ja
obian Jn−1 of D, parametrizing invertiblesheaves of degree n − 1 on D. The restri
tion of α to Jn−1 
an beidenti�ed with the summation map(21) Jn−1 → Asending a divisor ∑

nipi on D to the point ∑
nipi on A, using thegroup law on A. Thus, the �bre of f above D equals a �bre of the map(21). It follows from D being ample that su
h a �bre is 
onne
ted.This 
on
ludes the proof of Theorem 1.3.



14 MARTIN G. GULBRANDSEN3.5. Prin
ipally polarized surfa
es. Let us prove Corollary 1.5.Thus we assume (A,H) is a prin
ipally polarized abelian surfa
e withPi
ard number one.The impli
ation (1) =⇒ (2) is automati
, as explained in the in-trodu
tion. For the impli
ation (2) =⇒ (3), suppose KnA admits adivisor D with vanishing Beauville-Bogomolov square, 
orrespondingto rH + sǫ under the isomorphism (10), where r and s denote integers.Then
0 = q(D) = (rH)2 + s2q(ǫ) = 2r2 − 2s2nfrom whi
h it is immediate that n is a perfe
t square.Finally, the impli
ation (3) =⇒ (1) follows from Theorem 1.3:If n = m2 is a perfe
t square, the e�e
tive 
urve C = mH has selfinterse
tion 2n, and hen
e the theorem applies. The 
orollary is proved.4. On the base lo
usAgain let (A,H) be a prin
ipally polarized abelian surfa
e, and let

C = mH and n = m2. Then there does exist ξ ∈ A[n] su
h that Iξ(C)fails WIT: It is easy to 
he
k that this is the 
ase whenever ξ ∈ A[n] is
ontained in some translate T−1
a (H) of the polarization.In the �rst nontrivial 
ase n = 4, assuming the Pi
ard number of Ais one, the author has 
he
ked [5℄ that the base lo
us of the map Φ inequation 17 is exa
tly the lo
us of sheaves failing WIT. Furthermore,this lo
us has the stru
ture of a P2-bundle Q over A. By a 
arefulstudy of the map Φ one 
an show that the base lo
us of the �brationin Theorem 1.3 is the same lo
us Q. It seems likely that Φ is in fa
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