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1. THE FOURIER-MUKAI TRANSFORM OF THE STRUCTURE SHEAF OF A

FINITE SUBSCHEME

Under the thesis defense, prof. Manfred Lehn pointed out thefollowing mis-
take: It is claimed that, wheneverZ ⊂ A is a finite subscheme of an abelian
variety, then the Fourier-Mukai transform of its structuresheaf is

(*) ÔZ
∼=

⊕

i

Pai ,

where [Z] = ∑i[ai] as zero-cycles onA. By the invertibility of the Fourier-
Mukai transform, this cannot possibly hold for non-reducedZ, as the right
hand side only remembersZ as a cycle, and forgets its scheme structure.

The correct statement is the following: Choose any flag

Z1 ⊂ Z2 ⊂ ·· · ⊂ Zn = Z,

whereZi is a finite subscheme of lengthi. For eachi there is a pointai ∈ A and
a short exact sequence

0→ k(ai) → OZi → OZi−1 → 0.

Let Fi denote the Fourier-Mukai transform ofOZi . Then there are induced
short exact sequences

0→ Pai → Fi → Fi−1 → 0.

Thus there exists acofiltration

(**) ÔZ = Fn
πn
։ · · ·

π2
։ F1

π1
։ 0

where the kernel ofπi is isomorphic toPai , and[Z] = ∑i[ai] as zero-cycles.
Note that this is in fact a Jordan-Hölder cofiltration of̂OZ, which thus is semi-
stable. In addition, eachFi is locally free.

1.1. Reparation. At page 38 in the dissertation, the isomorphism (*) is used
to conclude that det̂OZ

∼= Pσ(Z), whereσ(Z) denotes the sum∑i ai with re-
spect to the group law. For this it is, however, sufficient that (*) holds when
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interpreted as an equality in the Grothendieck group, whichis true, and follows
from the existence of the cofiltration (**).

At page 53, the isomorphism (*) is applied in “Step 3” in the proof of a
result due to Maciocia (note that the mistake is mine, and notMaciocia’s). The
argument must be rephrased as follows to go through with the cofiltration (**)
in place of (*):

Firstly, with notation as in the proof on page 53, we have

c1(F ) = 0 and χ(F ) = 0.

This is (4.3.4) without dualizing, and is contained in the argument on page 53–
54. This argument works without using (*), as long as we know that the dual of
ÔZ is semi-stable withc1 = 0 andχ = 0. This follows from noting that the dual

of the cofiltration (**) is a Jordan-Hölder filtration of̂OZ
∨

with factor modules
P−ai (using that theFi are locally free).

Secondly, asF is a quotient ofÔZ with the same reduced Hilbert polyno-
mial, it is also semi-stable. Hence it has a Jordan-Hölder cofiltration, and the
kernels appearing have to be among thePai appearing in the cofiltration (**).
It follows thatF satisfies WIT2.

Now, the quotientR1Ŝ(E ) ։ F induces a quotientR2S(R1Ŝ(E )) ։ F̂ . But
R2S(R1Ŝ(E )) vanishes by Lemma 4.7, hence so doesF . This shows that
R1Ŝ(E ) is torsion, which gives a contradiction as before, and concludes Step 3
in the proof.

2. MINOR CORRECTIONS

• Page 72: Replace last sentence in the proof of Lemma 4.26 with:“As
both sheaves are stable, with coinciding reduced Hilbert polynomials,
any nonzero map between them is an isomorphism, and we have the
result.”


