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1. THE FOURIER-MUKAI TRANSFORM OF THE STRUCTURE SHEAF OF A
FINITE SUBSCHEME

Under the thesis defense, prof. Manfred Lehn pointed ouioif@ving mis-
take: It is claimed that, wheneve@rC A is a finite subscheme of an abelian
variety, then the Fourier-Mukai transform of its structsheaf is

) 02= @ Pa,

where [Z] = Yj[a] as zero-cycles oA. By the invertibility of the Fourier-

Mukai transform, this cannot possibly hold for non-redu@das the right

hand side only remembersas a cycle, and forgets its scheme structure.
The correct statement is the following: Choose any flag

21 CZpC--Cly=L1,
whereZ; is a finite subscheme of lengthFor each there is a poing € A and
a short exact sequence
0—k(a) — 0z — Oz _, — 0.

Let .% denote the Fourier-Mukai transform oéfz,. Then there are induced
short exact sequences

O_N-@ai — F — Fi_1— 0.

Thus there exists eofiltration
(%) or=7. 5.2z 80
where the kernel off is isomorphic to#, and[Z] = Y;[a] as zero-cycles.
Note that this is in fact a Jordan-Holder cofiltrationd@f, which thus is semi-
stable. In addition, eack; is locally free.

1.1. Reparation. At page 38 in the dissertation, the isomorphism (*) is used
to conclude that detz = P z), whereo (Z) denotes the surf§; & with re-

spect to the group law. For this it is, however, sufficient i holds when
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interpreted as an equality in the Grothendieck group, wisittue, and follows
from the existence of the cofiltration (**).

At page 53, the isomorphism (*) is applied in “Step 3” in the@gi of a
result due to Maciocia (note that the mistake is mine, and/taatiocia’s). The
argument must be rephrased as follows to go through withdhkration (**)
in place of (*):

Firstly, with notation as in the proof on page 53, we have

c(#)=0 and x(#)=0.

This is (4.3.4) without dualizing, and is contained in thguanent on page 53—
54. This argument works without using (*), as long as we knloat the dual of
07 is semi-stable witlt; = 0 andy = 0. This follows from noting that the dual

of the cofiltration (**) is a Jordan-Hdlder filtration GEP\’ZV with factor modules
Z_5 (using that the7; are locally free).

Secondly, asZ is a quotient ofé’\z with the same reduced Hilbert polyno-
mial, it is also semi-stable. Hence it has a Jordan-Holdéitredion, and the
kernels appearing have to be among tHg appearing in the cofiltration (**).
It follows that.7 satisfies WID. .

Now, the quotienR'S(&) — .% induces a quotier®2S(RLS(&)) — .Z. But
R2S(RIS£)) vanishes by Lemma 4.7, hence so doBs This shows that
RIS(&) is torsion, which gives a contradiction as before, and asmtes Step 3
in the proof.

2. MINOR CORRECTIONS

e Page 72: Replace last sentence in the proof of Lemma 4.26 \#igh:
both sheaves are stable, with coinciding reduced Hilbdgtmmials,
any nonzero map between them is an isomorphism, and we have th
result.”



