
IMPROVED HUFFMAN CODING USING RECURSIVE SPLITTING.

Karl Skretting, John H̊akon Husøy and Sven Ole Aase

Høgskolen i Stavanger, Department of Electrical and Computer Engineering
P. O. Box 2557 Ullandhaug, N-4004 Stavanger, Norway

E-mail: Karl.Skretting@tn.his.no

ABSTRACT

Lossless compression of a sequence of symbols is an
important part of data and signal compression. Huff-
man coding is lossless, it is also often used in lossy
compression as the final step after decomposition and
quantization of a signal. In signal compression, the
decomposition/quantization part seldom manages to
produce a sequence of completely independent sym-
bols. Here we present a scheme giving better results
than straightforward Huffman coding by utilizing this
fact. We split the original symbol sequence into two
sequences in such a way that the symbol statistics are,
hopefully, different for the two sequences. Individual
Huffman coding for each of these sequences will reduce
the average bit rate. This split is done recursively for
each sub-sequence until the cost associated with the
split is larger than the gain.

Experiments were done on different signals. They
were decomposed with the Discrete Cosine Transform,
quantized, and End Of Block coded, to give the input
symbol sequence. The results using the split scheme
was a bit rate reduction of usually more than 10%
compared to straightforward Huffman coding, and 0-
15% better than JPEG-like Huffman coding, best at
low bit rates.

1. INTRODUCTION

Huffman coding creates variable-length codes, each
represented by an integer number of bits. Symbols
with higher probabilities get shorter codewords. Huff-
man coding is the best coding scheme possible when
codewords are restricted to integer length, and it is
not too complicated to implement [1]. It is therefore
the entropy-coding scheme of choice in many applica-
tions.

The Huffman code tables usually need to be in-
cluded in the compressed file as side information. To
avoid this one could use a standard table derived for
the relevant class of data, this is an option in the
JPEG compression scheme [4]. Another alternative is
adaptive Huffman coding as in [3]. While these meth-
ods do not need side information they use non-optimal

codes and consequently more bits for the symbol code-
words. The efficiency of Huffman coding can often
be significantly improved by the use of custom made
Huffman code tables. This possibility is also included
in the JPEG compression scheme [4]. The methods
used in this paper all use custom made Huffman code
tables.

Huffman coding is effective when integer codeword
lengths are suitable for the symbol sequence. Gener-
ally, this is the case when no symbols have very high
probabilities, especially no symbol should have prob-
ability greater than 0.5. If the symbols probabilities
are 0.5, 0.25, 0.125, 0.0625 or less than 0.05 then a
scheme using integer codeword lengths will do quite
well. Huffman codes do not exploit any dependen-
cies between the symbols, so when the symbols are
statistically dependent other methods may be much
better.

1.1. Lossy signal compression

Lossy signal compression often has the following steps

1. Decomposition.

2. Quantization, often with threshold.

3. Run Length and End Of Block coding.

4. Huffman coding.

Here we compare three different schemes for compres-
sion: straightforward, JPEG- like, and recursive Huff-
man coding. The two first steps are identical for all
three methods, we use DCT and uniform quantization
with threshold. The results can then be represented
in a matrix where the rows are the frequencies and
the columns are time. The entries are the quantized
values, there are as many entries as there are samples
in the signal. The upper left part of this matrix may
be



Block 1 2 3 4 5 6 7 8 · · ·
LP (DC) 4 5 5 0 -4 -2 4 2 · · ·
BP (AC) 1 0 3 0 0 -1 0 -2 · · ·

0 1 1 0 0 4 1 0 · · ·
0 0 0 0 5 0 0 -1 · · ·
0 0 0 0 0 0 0 0 · · ·

HP (AC)
...

...
...

...
...

...
...

... · · ·

Since we have used a 16 points DCT, the matrix will
have 16 rows (bands) and each block is 16 samples.
The three different methods used here all start with
this matrix of quantized values, and use different ways
to form the symbol sequences.

Straightforward Huffman Coding use only End
of Block coding. The End of Block symbol, (0), and
the rest of the symbols are formed from the quantized
values according to this table

Value EOB · · · -2 -1 0 1 2 · · ·
Symbol 0 · · · 4 2 1 3 5 · · ·

The symbol sequence after EOB coding for the exam-
ple above will then be:

9, 3, 0, 11, 1, 3, 0, 11, 7, 3, 0, 0, 8, 1, 1, 11,
0, 4, 2, 9, 0, 9, 1, 3, 0, 5, 4, 1, 2, 0, · · ·.

We note that there will be as many EOB symbols as
there are columns in the matrix, and that the sym-
bol sequence will be non-negative integers where the
smaller ones are more probable than the larger ones,
because symbols represented by small integers corre-
spond to small magnitude of the quantized values.

JPEG-like Huffman Coding makes the symbols
the same way as JPEG does, each column of the ma-
trix correspond to the zigzag scanned sequence of a
8 × 8 pixel picture block in JPEG. The DC compo-
nent and the AC components are coded separately.
The DC component is DPCM coded and the symbols
are defined by the following table

Symbol DPCM difference Additional bits
0 0 0
1 -1, 1 1
2 -3, -2, 2, 3 2
3 -7, . . ., -4, 4, . . ., 7 3
4 -15, . . ., -8, 8, . . ., 15 4
...

...
...

Each symbol is followed by some additional bits to
uniquely give the DPCM difference. For the data ex-
ample this gives (the two last lines are stored)

Quantized DC value 4 5 5 0 -4 . . .
DPCM difference 4 1 0 -5 -4 . . .
Symbol 3 1 0 3 3 . . .
Additional bits 100 1 - 010 011 . . .

For the AC component the zeros are run length
coded. Each symbol consists of two parts, the first
part is the run that tells how many zeros that precede
the value (R), and the second part is the value symbol
(S). The value symbols are the same as the symbols
used for the DPCM differences. To completely specify
the value each symbol is succeeded by additional bits
the same way as for the DPCM differences. The com-
bined symbol (represented as one integer) is 16R+S.
Symbol (0) is EOB. For the example data this gives

Quantized AC value 1 EOB 1 EOB 3 . . .
Value symbol (S) 1 0 1 0 2 . . .
Preceding zeros (R) 0 0 1 0 0 . . .
Symbol (16R+S) 1 0 17 0 2 . . .
Additional bits 1 - 1 - 11 . . .

Recursive Huffman Coding uses the same sym-
bol sequence as straightforward Huffman coding. Usu-
ally these symbols are not independent, which means
that the true entropy (lower limit for possible bit rate)
is less than zero-order entropy (lower limit for bit rate
for Huffman code). The proposed scheme takes ad-
vantage of some dependencies in the symbol sequence
and exploits this in the Huffman coding procedure.
The next two sections of the paper explain the details
of this method. Note that the method has some limi-
tations. If the symbol sequence is highly correlated, it
will probably be better to try to improve the decom-
position part rather than to hope that this Huffman
coding scheme will utilize all of the correlation. Also,
if integer codeword lengths are not suitable then other
methods may be much better.

2. SPLITTING THE SYMBOL SEQUENCE

The basic idea is that by splitting a long sequence into
several shorter ones in a way that makes the symbol
probabilities (and the optimal code lengths) different
for each sequence, then individual Huffman coding of
each sequence will reduce the total number of bits
used for the codewords. On the other hand, there
will be more Huffman code tables to include. Clever
splitting combined with effective coding of the side
information should give an improvement in overall bit
rate. We choose to use a scheme that first splits the
symbol sequence after End of Block coding into three
sequences.

2.1. Splitting into three sequences

When we examine the End of Block coded sequence
we make the following observations

• A symbol succeeding an EOB symbol (0) is the
DC component, or possibly another EOB sym-
bol.



• An EOB symbol (0) will never succeed a (1)
symbol.

This may be exploited by creating three symbol se-
quences from the original sequence. The first sequence
contains the first symbol and the symbols following
a (0) symbol, the next sequence contains the sym-
bols following a (1) symbol, and the third sequence
contains all the other symbols. The key to success
is that the symbol probabilities will be different for
these sequences. In fact only this splitting improve
straightforward Huffman coding considerably. Using
this scheme, the example sequence will be split as

Original EOB sequence: 9, 3, 0, 11, 1, 3, 0, 11, 7, 3, 0,
0, 8, 1, 1, 11, 0, 4, 2, 9, 0, 9, 1, 3, 0, 5, 4, 1, 2, 0, . . .
First sequence: 9, 11, 11, 0, 8, 4, 9, 5, . . .
Second sequence: 3, 1, 11, 3, 2, . . .
Third sequence: 3, 0, 1, 0, 7, 3, 0, 1, 0, 2, 9, 0, 1, . . .

Then each of these is dealt with independently of each
other and in the same way by the recursive splitting
part of the function.

2.2. Recursive splitting

The recursive splitting part either

1. splits the input sequence into two sub-sequences,
this split is done either

(a) by cutting the sequence in the middle or

(b) by letting the previous symbol decide to
which sub-sequence the following symbol
should be put into,

and then calls itself twice with each of the sub-
sequences as arguments or

2. does Huffman coding of the input sequence, that
is store the Huffman table information and the
codewords into the output bit sequence.

The decision rules are: If the symbol sequence is long,
1.a is done. Else, we test if splitting (as in 1.b) will
reduce the number of bits, and if so, we split as in 1.b,
else we do point 2.

Cutting in the middle (1.a) is one obvious way to
split the symbol sequence, especially if the signal is
non-stationary. When sequence length is larger than
215, the sequence is split into two sequences of half
the length. This ensure that no used symbol has a
probability less than 2−15. Then the given code word
lengths always will be less or equal to 15, which is the
maximum code word length that we allow when we
code the Huffman tables.

Splitting by previous symbol (1.b) tries to uti-
lize correlation between successive symbols by letting
the previous symbol decide to which sub-sequence the

following symbol should be put into. The first sub-
sequence contains the symbols following a symbol with
a value less or equal than a limit value, the second
sub-sequence contains the other symbols (including
the first symbol). Using this scheme with limit value
equal 1, one example sequence will be split as

Ex. sequence: 3, 0, 1, 0, 7, 3, 0, 1, 0, 2, 9, 0, 1, . . .
First sequence: 1, 0, 7, 1, 0, 2, 1, . . .
Second sequence: 3, 0, 3, 0, 9, 0, . . .

By using the median (of the numbers representing the
symbols in the original sequence) as this limit value,
we split into two approximately equal size sub- se-
quences. In addition, the split is done in such a way
that we do not need the decision rule or the limit value
to be included as side information.

3. INCREASED SIDE INFORMATION

The way we have done splitting, very little side infor-
mation is needed to specify when and how to split a
sequence. In fact, we use only one bit to tell whether
a sequence is split or not. However, we need to in-
clude as many Huffman tables as we have sequences.
To keep this side information small we put a bit of ef-
fort into doing a good job on compact storing of these
tables. This effort pays off; our scheme often uses less
than one third of the bits to store the Huffman tables,
compared to what JPEG uses. Let us start by looking
at how JPEG store the Huffman tables.

3.1. JPEG Huffman table specification

Usually this side information is relatively small, and
consequently not much effort has been used in repre-
senting this in few bits. JPEG use a special segment,
the DHT marker segment structure, to specify a Huff-
man table [4]. In this segment, one byte are used to
tell how many symbols there are with code length i,
for i = 1 : 16, then follows the symbols with one byte
for each. This requires (16+N) bytes for N symbols.

3.2. Efficient Huffman table specification

We tried several different ad-hoc methods to store the
Huffman tables. The problem was to find a method
that performed well for all possible Huffman tables.
We ended up with a method that performed quite
well, which we will now briefly describe. This method
uses 4 bits to give length of first symbol, then for each
of the next symbols a code to tell its length where

Symbol what it means
0 same length as previous symbol
10 increase length by 1
1100 reduce length by 1
1101 increase length by 2
111xxxx set symbol length to xxxx



This way of coding the Huffman tables utilize the
fact that adjacent symbols often have approximately
the same probability, and thus approximately the same
codeword lengths.

4. SIMULATIONS AND COMPARISON

The three signals used in the compression experiments
are an AR1 (ρ = 0.95) signal, an ECG signal (nor-
mal sinus rhythm, MIT100 [2]), and a seismic signal
(pre-stack common shot gather [5]). These signals
are very different from each other, the ECG signal is
quite regular and the seismic signal is quite noisy. The
signal length is, 250000 samples, but when we com-
pressed shorter signals, ex. 25000 samples, the graphs
were quite similar to the graphs that we include here.
All signals were decomposed by the Discrete Cosine
Transform (block size 16), and then quantized, the
quantizing step varied to get signals with different
Signal to Noise Ratios.

The three figures show the results for the AR1
signal, the ECG signal and the seismic signal respec-
tively.

4.1. Conclusion

Both on real world signals and a synthetic signal the
proposed Huffman coding scheme does considerably
better than straightforward Huffman coding, and usu-
ally better than JPEG-like Huffman coding, especially
at low bit rates.

5. REFERENCES

[1] Allen Gersho and Robert M. Gray.
Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Boston, 1992.
ISBN 0-7923-9181-0

[2] Massachusetts Institute of Technology.
The MIT-BIH Arrhythmia Database CD-ROM,
22nd edition, 1992.

[3] Mark Nelson, Jean-Loup Gailly.
The Data Compression Book. M&T Books, New
York, USA, 1996. ISBN 1-55851-434-1

[4] William B. Pennebaker, Joan L. Mitchell.
JPEG: Still Image Data Compression Standard.
Van Nostrand Reinhold, New York, USA, 1992.
ISBN: 0442012721

[5] Seismic Data Compression Reference Set.
http://www.ux.his.no/~karlsk/sdata/

5 10 15 20 25 30
80

85

90

95

100

105

110

B
it 

ra
te

 (
in

 p
er

ce
nt

 o
f s

tr
ai

gh
tfo

rw
ar

d 
H

uf
fm

an
 c

od
in

g)

Actual SNR

AR−1 signal (rho=0.95)

Straightforward
JPEG−like
Recursive

Figure 1: AR1 signal compressed at different signal
to noise ratios.

10 12 14 16 18 20 22 24 26 28
80

85

90

95

100

105

110

B
it 

ra
te

 (
in

 p
er

ce
nt

 o
f s

tr
ai

gh
tfo

rw
ar

d 
H

uf
fm

an
 c

od
in

g)

Actual SNR

ECG signal

Straightforward
JPEG−like
Recursive

Figure 2: ECG signal compressed at different signal
to noise ratios.

5 10 15 20 25 30
80

85

90

95

100

105

110

B
it 

ra
te

 (
in

 p
er

ce
nt

 o
f s

tr
ai

gh
tfo

rw
ar

d 
H

uf
fm

an
 c

od
in

g)

Actual SNR

Seismic prestack signal

Straightforward
JPEG−like
Recursive

Figure 3: Seismic signal compressed at different signal
to noise ratios.


