
List of m-files, with initial comments lines, from f:\matlab\Comp*.m. This
list was printed 21-Feb-2011 09:29:38 by the MakeTex.m function.

contents.m 981 bytes 21-feb-2011 09:26:00

% Text describing the m-files in directory f:\matlab\Comp

% File generated by mkcontnt.m 21-Feb-2011 09:25:59

%

% Arith06 Arithmetic encoder or decoder

% Arith07 Arithmetic encoder or decoder

% entropy Function returns first order entropy of a source.

% eob3 End Of Block Encoding (or decoding) into (from) three sequences

% Huff06 Huffman encoder/decoder with (or without) recursive splitting

% HuffCode Based on the codeword lengths this function find the Huffman codewords

% HuffLen Find the lengths of the Huffman code words

% HuffTabLen Find how many bits we need to store the Huffman Table information

% HuffTree Make the Huffman-tree from the lengths of the Huffman codes

% Mat2Vec Convert an integer matrix to a cell array of vectors,

% TestArith Test and example of how to use Arith06 and Arith07

% TestHuff Test and example of how to use Huff06

% uniquant Uniform scalar quantizer (or inverse quantizer) with threshold

Arith06.m 19115 bytes 28-jun-2001 20:54:02

% Arith06 Arithmetic encoder or decoder

% Vectors of integers are arithmetic encoded,

% these vectors are collected in a cell array, xC.

% If first argument is a cell array the function do encoding,

% else decoding is done.

% [y, Res] = Arith06(xC); % encoding

% y = Arith06(xC); % encoding

% xC = Arith06(y); % decoding

% --

% Arguments:

% y a column vector of non-negative integers (bytes) representing

% the code, 0 <= y(i) <= 255.

% Res a matrix that sum up the results, size is (NumOfX+1)x4

% one line for each of the input sequences, the columns are

% Res(:,1) - number of elements in the sequence

% Res(:,2) - unused (=0)

% Res(:,3) - bits needed to code the sequence

% Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)

% Then the last line is total (which include bits needed to store NumOfX)

% xC a cell array of column vectors of integers representing the

% symbol sequences. (should not be to large integers)

% If only one sequence is to be coded, we must make the cell array

% like: xC=cell(2,1); xC{1}=x; % where x is the sequence

% --

% Note: this routine is extremely slow since it is all Matlab code

% This function do recursive encoding like Huff06.

% An alternative (a perhaps better) aritmethic coder is Arith07,

% which is a more "pure" arithmetic coder

% SOME NOTES ON THE FUNCTION

% The descrition of the encoding algorithm is in

% chapter 5 of "The Data Compression Book" by Mark Nelson.

% The actual coding algorithm is practical identical, it is a translation

% from C code to MatLab code, but some differences have been made.

% The system model, T, keep record of the symbols that have been encoded.

1

% Based on this table the probabiltity of each symbol is estimated. Probability

% for symbol m is: (T(m+1)-T(m+2))/T(1)

% The symbols are 0,1,...,M and Escape (M+1), Escape is used to indicate an

% unused symbol, which is then coded by another table, the Tu table.

% POSSIBLE IMPROVEMENTS

% - better decision wether to split a sequence or not

% - for long sequences, update frequency table T=floor(T*a) (ex: 0.2 < a < 0.9)

% and do this for every La samples (ex: 100 < La < 5000)

% We must not set any non-zero probabilities to zero during this adaption!!

% - Display some information (so users know something is happening)

Arith07.m 30008 bytes 02-sep-2004 15:28:28

% Arith07 Arithmetic encoder or decoder

% Vectors of integers are arithmetic encoded,

% these vectors are collected in a cell array, xC.

% If first argument is a cell array the function do encoding,

% else decoding is done.

% [y, Res] = Arith07(xC); % encoding

% y = Arith07(xC); % encoding

% xC = Arith07(y); % decoding

% --

% Arguments:

% y a column vector of non-negative integers (bytes) representing

% the code, 0 <= y(i) <= 255.

% Res a matrix that sum up the results, size is (NumOfX+1)x4

% one line for each of the input sequences, the columns are

% Res(:,1) - number of elements in the sequence

% Res(:,2) - unused (=0)

% Res(:,3) - bits needed to code the sequence

% Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)

% Then the last line is total (which include bits needed to store NumOfX)

% xC a cell array of column vectors of integers representing the

% symbol sequences. (should not be to large integers)

% If only one sequence is to be coded, we must make the cell array

% like: xC=cell(2,1); xC{1}=x; % where x is the sequence

% --

% Note: this routine is extremely slow on Matlab version 5.x and earlier

% SOME NOTES ON THE FUNCTION

% This function is almost like Arith06, but some important changes have

% been done. Arith06 is buildt almost like Huff06, but this close connection

% is removed in Arith07. This imply that to understand the way Arith06

% works you should read the documentation for Huff06 and especially the

% article on Recursive Huffman Coding. To understand how Arith07 works it is

% only confusing to read about the recursive Huffman coder, Huff06.

entropy.m 543 bytes 21-feb-2011 09:25:36

% entropy Function returns first order entropy of a source.

%

% H = entropy(S)

% S is probability or count of each symbol

% S should be a vector of non-negative numbers.

% Ver. 1.0 09.10.97 Karl Skretting

% Ver. 1.1 25.12.98 KS, Signal Processing Project 1998, english version

eob3.m 7086 bytes 22-okt-2010 14:55:08

2

% eob3 End Of Block Encoding (or decoding) into (from) three sequences

% The EOB sequence of numbers (x) is splitted into three sequences,

% (x1, x2, x3), based on previous symbol. The total (x) will have

% L EOB symbol (EOB is 0) for the rest x is one more than y

% The reason to split into several sequences is that the statistics for

% each sequence will be different and this may be exploited in entropy coding

% see also ..\ICTools\myreshape.m (which is mainly for images)

% x = eob3(y); % encoding into one sequence

% [x1,x2,x3] = eob3(y); % encoding into three sequences

% [x,x1,x2,x3] = eob3(y); % encoding into one sequence and three sequences

% y = eob3(x, N); % decoding from one sequence

% y = eob3(x1, x2, x3, N); % decoding from three sequences

% --

% arguments:

% x - all symbols in the EOB sequence, this sequence may

% be splitted into the three following sequence

% length(x)=length(x1)+length(x2)+length(x3)

% x1 - the first symbol and all symbols succeeding an EOB symbol

% x2 - all symbols succeeding a symbol representing zero (in x this is 1),

% this will never be an EOB symbol (which is 0)

% x3 - other symbols

% y - A matrix, size NxL, of non-negtive integers

% N - Length of Block, it is length of column in y,

% --

% Note: Number of input arguments indicate encoding or decoding!

%--

% Copyright (c) 1999. Karl Skretting. All rights reserved.

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/

%

% HISTORY:

% Ver. 1.0 01.01.99 Karl Skretting, Signal Processing Project 1998

% Ver. 1.1 14.01.99 KS, sort rows of y to get rows with fewest

% zeros on the top.

% Ver. 1.2 10.03.99 KS, made eob3 based on c_eob

% Ver. 1.3 21.06.00 KS, some minor changes (and moved to ..\comp\)

% Ver. 1.4 08.06.09 KS, warning messages changed

%--

Huff06.m 25888 bytes 22-okt-2010 14:37:30

% Huff06 Huffman encoder/decoder with (or without) recursive splitting

% Vectors of integers are Huffman encoded,

% these vectors are collected in a cell array, xC.

% If first argument is a cell array the function do encoding,

% else decoding is done.

% [y, Res] = Huff06(xC, Level, Speed); % encoding

% y = Huff06(xC); % encoding

% xC = Huff06(y); % decoding

% --

% Arguments:

% y a column vector of non-negative integers (bytes) representing

% the code, 0 <= y(i) <= 255.

% Res a matrix that sum up the results, size is (NumOfX+1)x4

% one line for each of the input sequences, the columns are

% Res(:,1) - number of elements in the sequence

% Res(:,2) - zero-order entropy of the sequence

% Res(:,3) - bits needed to code the sequence

% Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)

% Then the last line is total (which include bits needed to store NumOfX)

3

% xC a cell array of column vectors of integers representing the

% symbol sequences. (should not be to large integers)

% If only one sequence is to be coded, we must make the cell array

% like: xC=cell(2,1); xC{1}=x; % where x is the sequence

% Level How many levels of splitting that is allowed, legal values 1-8

% If Level=1, no further splitting of the sequences will be done

% and there will be no recursive splitting.

% Speed For complete coding set Speed to 0. Set Speed to 1 to cheat

% during encoding, y will then be a sequence of zeros only,

% but it will be of correct length and the other output

% arguments will be correct.

% --

% SOME NOTES ON THE FUNCTION

% huff06 depends on other functions for Huffman code, and the functions in this file

% HuffLen - find length of codewords (HL)

% HuffTabLen - find bits needed to store Huffman table information (HL)

% HuffCode - find huffman codewords

% HuffTree - find huffman tree

HuffCode.m 2242 bytes 21-jun-2000 19:44:18

% HuffCode Based on the codeword lengths this function find the Huffman codewords

% HK = HuffCode(HL,Display);

% HK = HuffCode(HL);

% --

% Arguments:

% HL length (bits) for the codeword for each symbol

% This is usually found by the hufflen function

% HK The Huffman codewords, a matrix of ones or zeros

% the code for each symbol is a row in the matrix

% Code for symbol S(i) is: HK(i,1:HL(i))

% ex: HK(i,1:L)=[0,1,1,0,1,0,0,0] and HL(i)=6 ==>

% Codeword for symbol S(i) = ’011010’

% Display==1 ==> Codewords are displayed on screen, Default=0

% --

%--

% Copyright (c) 1999. Karl Skretting. All rights reserved.

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/

%

% HISTORY:

% Ver. 1.0 25.08.98 KS: Function made as part of Signal Compression Project 98

% Ver. 1.1 25.12.98 English version of program

%--

HuffLen.m 3883 bytes 18-nov-2009 11:53:30

% HuffLen Find the lengths of the Huffman code words

% Based on probability (or number of occurences) of each symbol

% the length for the Huffman codewords are calculated.

%

% HL = hufflen(S);

% --

% Arguments:

% S a vector with number of occurences or probability of each symbol

% Only positive elements of S are used, zero (or negative)

% elements get length 0.

% HL length (bits) for the codeword for each symbol

4

% --

% Example:

% hufflen([1,0,4,2,0,1]) => ans = [3,0,1,2,0,3]

% hufflen([10,40,20,10]) => ans = [3,1,2,3]

%--

% Copyright (c) 1999. Karl Skretting. All rights reserved.

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/

%

% HISTORY:

% Ver. 1.0 28.08.98 KS: Function made as part of Signal Compression Project 98

% Ver. 1.1 25.12.98 English version of program

% Ver. 1.2 28.07.99 Problem when length(S)==1 was corrected

% Ver. 1.3 22.06.00 KS: Some more exceptions handled

%--

HuffTabLen.m 6886 bytes 02-aug-2006 15:28:02

% HuffTabLen Find how many bits we need to store the Huffman Table information

% HLlen = HuffTabLen(HL);

%--

% arguments:

% HL The codeword lengths, as returned from HuffLen function

% This should be a vector of integers

% where 0 <= HL(i) <= 32, 0 is for unused symbols

% We then have max codeword length is 32

% HLlen Number of bits needed to store the table

%--

% Function assume that the table information is stored in the following format

% previous code word length is set to the initial value 2

% Then we have for each symbol a code word to tell its length

% ’0’ - same length as previous symbol

% ’10’ - increase length by 1, and 17->1

% ’1100’ - reduce length by 1, and 0->16

% ’11010’ - increase length by 2, and 17->1, 18->2

% ’11011’ - One zero, unused symbol (twice for two zeros)

% ’111xxxx’ - set code length to CL=Prev+x (where 3 <= x <= 14)

% and if CL>16; CL=CL-16

% we have 4 unused 7 bit code words, which we give the meaning

% ’1110000’+4bits - 3-18 zeros

% ’1110001’+8bits - 19-274 zeros, zeros do not change previous value

% ’1110010’+4bits - for CL=17,18,...,32, do not change previous value

% ’1111111’ - End Of Table

HuffTree.m 2514 bytes 28-mar-2003 14:09:16

% HuffTree Make the Huffman-tree from the lengths of the Huffman codes

% The Huffman codes are also needed, and if they are known

% they can be given as an extra input argument

% Htree = HuffTree(HL,HK);

% Htree = HuffTree(HL);

% --

% Arguments:

% HL length (bits) for the codeword for each symbol

% This is usually found by the hufflen function

% HK The Huffman codewords, a matrix of ones or zeros

% the code for each symbol is a row in the matrix

% Htree A matrix, (N*2)x3, representing the Huffman tree,

5

% needed for decoding. Start of tree, root, is Htree(1,:).

% Htree(i,1)==1 indicate leaf and Htree(i,1)==0 indicate branch

% Htree(i,2) points to node for left tree if branching point and

% symbol number if leaf. Note value is one less than symbol number.

% Htree(i,3) points to node for right tree if branching point

% Left tree is ’0’ and right tree is ’1’

% --

%--

% Copyright (c) 1999. Karl Skretting. All rights reserved.

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/

%

% HISTORY:

% Ver. 1.0 25.08.98 KS: Function made as part of Signal Compression Project 98

% Ver. 1.1 25.12.98 English version of program

%--

Mat2Vec.m 10309 bytes 08-jun-2009 14:09:00

% Mat2Vec Convert an integer matrix to a cell array of vectors,

% several different methods are possible, most of them are non-linear.

% The inverse function is also performed by this function,

% to use this first argument should be a cell array instead of a matrix.

% Examples:

% xC = Mat2Vec(W, Method); % convert the KxL matrix W to vectors

% xC = Mat2Vec(W, Method, K, L); % convert the KxL matrix W to vectors

% W = Mat2Vec(xC, Method, K, L); % convert vectors in xC to a KxL matrix

% ---

% arguments:

% xC a cell array of column vectors of integers representing the

% symbol sequences for matrix W.

% W a KxL matrix of integers

% Method which method to use when transforming the matrix of quantized

% values into one or several vectors of integers.

% The methods that only return non-negative integers in xC are

% marked by a ’+’, the others also returns negative integers

% if W contain negative integers.

% For Method=10,11,14 and 15 we have K=2,4,8,16,32,64, or 128.

% The legal methods are

% 0 by columns, direct 1 seq.

% 1 by columns, run + values 2 seq.

% 2 by rows, direct 1 seq.

% 3 by rows, run + values 2 seq.

% 4 + EOB coded (by columns) 1 seq.

% 5 + EOB coded (by columns) 3 seq.

% 6 + by columns, run + values 2 seq.

% 7 + by rows, run + values 2 seq.

% 8 each row, direct K seq.

% 9 each row, run + values 2*K seq.

% 10 each dyadic subband, direct log2(2*K)seq.

% 11 each dyadic subband, run + values 2*log2(2*K)seq.

% 12 + each row, direct K seq.

% 13 + each row, run + values 2*K seq.

% 14 + each dyadic subband, direct log2(2*K)seq.

% 15 + each dyadic subband, run + values 2*log2(2*K)seq.

% the following ones are for K = 4, 16, 64, 256 or 1024

% 16 each 2D-dyadic, direct 1+(3/2)*log2(K)seq.

% 17 each 2D-dyadic, run+value 2+3*log2(K)seq.

% 18 + each 2D-dyadic, direct 1+(3/2)*log2(K)seq.

% 19 + each 2D-dyadic, run+value 2+3*log2(K)seq.

6

% 20 + EOB coded (by columns, 2D-dyadic) 3 seq.

% K size of matrix W, number of rows

% L size of matrix W, number of columns

% ---

% methods 16-19 added jun 5. 2009, KS

TestArith.m 6257 bytes 22-okt-2010 15:06:18

% TestArith Test and example of how to use Arith06 and Arith07

%--

% Copyright (c) 2000. Karl Skretting. All rights reserved.

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/

%

% HISTORY:

% Ver. 1.0 10.04.2001 KS: function made

% Ver. 1.1 28.06.2001 KS: more test signals

%--

TestHuff.m 1728 bytes 22-okt-2010 15:08:22

% TestHuff Test and example of how to use Huff06

%--

% Copyright (c) 2000. Karl Skretting. All rights reserved.

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/

%

% HISTORY:

% Ver. 1.0 20.06.2000 KS: function made

%--

% first make some data we will use in test

uniquant.m 1880 bytes 22-okt-2010 14:51:34

% uniquant Uniform scalar quantizer (or inverse quantizer) with threshold

% Note: Use three arguments for inverse quantizing and

% four arguments for quantizing.

% Y = uniquant(X, del, thr, ymax); % quantizer

% X = uniquant(Y, del, thr); % inverse quantizer

% --

% arguments:

% X - the values to be quantized (or result after inverse

% quantizer), a vector or matrix with real values.

% Y - the indexes for the quantizer cells, the bins are indexed as

% ..., -3, -2, -1, 0, 1, 2, 3, ... where 0 is for the zero bin

% del - delta i quantizer, size/width of all cells except zero-cell

% thr - threshold value, width of zero cell is from -thr to +thr

% ymax - largest value for y, only used when quantizing

% --

%--

% Copyright (c) 1999. Karl Skretting. All rights reserved.

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail: karl.skretting@tn.his.no Homepage: http://www.ux.his.no/~karlsk/

%

% HISTORY:

% Ver. 1.0 27.07.99 Karl Skretting, Signal Processing Project 1999

7

% function made based on c_q1.m

% Ver. 1.2 22.10.10 KS: same as ..\ICTools\uniquant

%--

8

