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ABSTRACT

Sparse representation of images using learned dictionaries have been shown to work well for applications like
image denoising, impainting, image compression, etc. In this paper dictionary properties are reviewed from
a theoretical approach, and experimental results for learned dictionaries are presented. The main dictionary
properties are the upper and lower frame (dictionary) bounds, and (mutual) coherence properties based on the
angle between dictionary atoms. Both l0 sparsity and l1 sparsity are considered by using a matching pursuit
method, order recursive matching Pursuit (ORMP), and a basis pursuit method, i.e. LARS or Lasso. For
dictionary learning the following methods are considered: Iterative least squares (ILS-DLA or MOD), recursive
least squares (RLS-DLA), K-SVD and online dictionary learning (ODL). Finally, it is shown how these properties
relate to an image compression example.

Keywords: Sparse coding, dictionary learning, dictionary properties, image compression

1. INTRODUCTION

Image representation using sparse approximation and learned overcomplete dictionaries has been given some
attention in recent years. Several theoretical works have been presented and possible applications are given, like
face compression,1–4 general image compression,5,6 image denoising,7–9 missing pixels or impainting,10,11 texture
classification12 or discrimination.13

One challenge that is common to all applications that uses learned dictionaries is how to assess the dictionary.
Can the dictionary quality be quantified in some way? What would be relevant quality measures? These are
not easy questions to answer. Is it a good dictionary for the given task or could it be that other unknown
dictionaries might perform much better? Avoiding these questions, one possible approach is simply comparing
the application performance of several learned dictionaries to each other and to the performance of other (state-
of-the-art) methods.

In this paper we are searching for ways to quantify the quality of a learned dictionary. In Section 2 some
dictionary properties are presented. Section 3 starts by presenting these properties on a set of chosen dictionaries.
This is followed by an experiment (Sec. 3.1) were RLS-DLA parameters are evaluated in terms of the defined
properties. In Section 3.2 some learning methods (MOD, K-SVD, RLS-DLA, ODL) and two pursuit methods
(LARS, ORMP) are combined and tested using the same training sets. The proposed properties for the different
dictionaries are finally presented. Finally, in Section 3.3 the learned dictionaries are tested in a simple compression
application. The results give a possibly better understanding of the learning algorithms.

We use the following notation: Matrices are represented by upper case letters, ex. D, X, vectors are
represented by lower case letters, ex. x, u, scalars by Greek letters, ex. α, λ. w(k) means entry k of vector w,
di is the vector numbered i in a set of vectors or column i in matrix D and Di is matrix D in iteration number
i. ‖ · ‖ denotes the l2-norm for vectors and the Frobenius norm, or trace norm, for matrices. The squared of the
Frobenius norm is ‖A‖2F = trace(ATA) =

∑
i

∑
j A(i, j)2. ‖ · ‖1 is the l1-norm (sum of absolute values) and ‖ · ‖0

is the l0 pseudo-norm which is the number of non-zero elements.
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1.1 Sparse approximation

In this paper we consider real finite dimensional and normalized dictionaries. The dictionary can be represented
as a matrix, where the columns of the matrix are the dictionary atoms, and all dictionary atoms have unit norm:

D = [d1, d2, . . . , dK ] ∈ IRN×K , di ∈ IRN and ||di|| = 1 and N ≤ K. (1)

We are concerned with signal vectors x, for example pixels from a patch of an image ordered as a column
vector according to the Sparse Land model of Elad.3 Thus a signal vector can be approximated by a linear
combination of dictionary atoms giving:

x̃ =
K∑

k=1

w(k)dk = Dw, r = x− x̃ = x−Dw, (2)

with a sparseness constraint on the coefficient vector w, ‖w‖0 ≤ s0 or ‖w‖1 ≤ s1. The problem of finding w is
the sparse approximation problem and it is often formulated as follows:

wopt = arg min
w
‖w‖p + γ‖x−Dw‖22 p ∈ {0, 1}. (3)

As γ increases the solution is getting more dense. Setting p = 0 gives an NP-hard problem. Good, but not
necessarily optimal, solutions can be found by matching pursuit algorithms,14,15 for example the order recursive
matching pursuit16 (ORMP) algorithm. Setting p = 1 in Eq. 3 gives a feasible optimization problem. The least
angle regression17 (LARS) algorithm is effective for solving this problem. Both ORMP and LARS find w in a
greedy way, by gradually increasing γ and thus select more vectors in the sparse representation until a stopping
criterion is reached. The stopping criterion can be that either ‖w‖p or ‖x − Dw‖2 have reached a predefined
limit. For image representation it is usually better to use the error limit ‖x−Dw‖2 < δerr as stopping criterion,
since a limit on ‖w‖p will give a much larger error for patches with many details than for flat patches. Practical
implementations of both ORMP and LARS will be more effective when a fixed dictionary D can be used to find
solutions to several signal vectors.

1.2 Dictionary learning

A common setup for the dictionary learning problem3 starts with access to a training set, {xl}Ll=1, xl ∈ IRN , and
the aim is to find both a dictionary, D ∈ IRN×K , and a corresponding coefficient set {wl}Ll=1, wl ∈ IRK . This
setup is used in both the method of optimized directions18 MOD, the family of MOD algorithms is alternatively
denoted iterative least squares dictionary learning algorithms19 (ILS-DLA), and in K-SVD.1 Let X denote a
matrix with xl as columns and W a matrix with the corresponding coefficients wl as columns. The dictionary
learning problem can be formulated as an optimization problem with respect to W and D:

{Dopt, Wopt} = arg min
D,W

L∑

l=1

||wl||p + γ‖X −DW‖2 and ‖di‖ = 1 (4)

where ‖X−DW‖2 =
∑L
l=1 ‖rl‖2. This is a very hard optimization problem, and a practical relaxation is to split

the problem into two parts, iteratively solved:
1) Keeping D fixed find W , this gives L independent problems as in Eq. 3, and
2a) MOD: Keeping W fixed find D using the least squares solution D = (XWT )(WWT )−1.
2b) K-SVD: Keeping non-zero positions in W fixed and find D and W using SVD decompositions.

Part 1 is computationally most demanding, and with this setup there will be a lot of computational effort
between each dictionary update, slowing down the learning process. This is especially true with large training
sets, which will often be the case for image processing applications. Some minor adjustments can be done to
improve the learning speed, here denoted as the large-MOD variant. The training set is (randomly) divided
into M (equal sized) sets, {Xm}Mm=1. Now, for each iteration we only use one, some few, (or perhaps almost all)
of the subsets of training vectors in part 1 above. Which subsets to use may be randomly chosen, or the subsets



which has been unused for the longest time can be chosen. Anyway, finding new coefficients for only a part of
the total number of training vectors reduces the time used. In part 2 the matrices Ai and Bi are calculated by
adding products of training vector submatrices and coefficient submatrices:

Ai =
∑
m

WmW
T
m, Bi =

∑
m

XmW
T
m and Di = BiA

−1
i . (5)

The sum can be taken over the same subsets that were used in part 1 of the same iteration. An alternative,
which is quite obvious for the last iterations when the dictionary do not change very much in each iteration
but which can be used for all iterations, is to take the sum in Eq. 5 over all subsets in the training set even if
only some of the coefficients were updated in part 1 for this iteration. This idea was used and first published in
Ref. 20 as an implementation detail. Now we recognize it, together with the LS-DLA variant in next paragraph,
as a useful step in the transition from MOD to RLS-DLA.

An alternative to large-MOD, here denoted LS-DLA, which may be easier to implement, includes a forgetting
factor (0 � λi ≤ 1) in the algorithm. This opens the possibility of letting the training set be infinitely large.
Xi can be a new subset from an infinite training set or it can reuse training vectors processed before. Di−1 is
used solving the sparse approximation problem of Eq 3, finding the corresponding coefficients Wi. The following
dictionary update step can be formulated as:

Ai = λiAi−1 +WiW
T
i , Bi = λiBi−1 +XiW

T
i and Di = BiA

−1
i . (6)

Online dictionary learning ODL21 can be explained from Eq. 6. A single training vector xi or a mini-batch
Xi is processed in each iteration. The corresponding coefficients, wi or Wi, are found and the Ai and Bi matrices
are updated according to Eq. 6 (with λi = 1), which in the single training vector case are Ai = Ai−1 +wiw

T
i and

Bi = Bi−1 + xiw
T
i . In ODL the computationally demanding calculation of Di is replaced by doing one iteration

of the block-coordinate descent with warm restart algorithm. A little bit simplified, each column (atom) of the
dictionary is updated as

dj ← dj + (bj −Daj)/aj(j), for j = 1, 2, . . . ,K (7)

where dj , bj , aj are columns of the D, Bi, and Ai matrices and D here is the column by column transition of
the dictionary from Di−1 to Di. Note that if Eq. 7 is repeated the dictionary will converge to the least squares
solution, D = BiA

−1
i , often after just some few iterations.

The recursive least squares dictionary learning algorithm RLS-DLA22 can also be found by processing just
one new training vector xi in each iteration of Eq. 6. The current dictionary Di−1 is used to find the corresponding
weights wi. In RLS-DLA the main improvement is that instead of using Eq. 6, with xi for Xi and wi for Wi, the
matrix inversion lemma (Woodbury matrix identity) can be used to update Ci = A−1

i and Di directly without
using neither the Ai nor the Bi matrix. This gives the following simple updating rules:

Ci = A−1
i = (λ−1

i Ci−1)− αuuT and Di = Di−1 + αriu
T , (8)

where u = (λ−1
i Ci−1)wi and α = 1/(1 + wTi u), ri = xi −Di−1wi is the representation error. Note that in these

steps neither matrix inversion nor matrix by matrix multiplication is needed.

The real advantage of RLS-DLA compared to MOD and K-SVD comes with the flexibility introduced by the
forgetting factor λi. The Search-Then-Converge22 scheme is particular favourable, and the idea is to forget
more quickly in the beginning then forget less as learning proceeds and we get more confidence in the quality of
the dictionary. This can be done by starting with λ0 < 1 (we denote the initial forgetting factor as λ0 even if
λ1 is the first to be used) and slowly increasing λi towards 1. The update scheme and λ0 should be chosen so
that the initial dictionary is soon forgotten and convergence is obtained in a reasonable amount of iterations. In
Ref. 22 it was shown that the resulting dictionaries are better with regard to sparse representation of a test data
set compared with MOD or K-SVD dictionaries. Since ODL also is based on the matrices Ai and Bi in Eq. 6
a forgetting factor, and thus the Search-Then-Converge scheme, can be included with ODL the same way as in
RLS-DLA. In fact, it seems that a similar scheme is an option in Mairals ODL implementation in the SPArse



Modeling Software (SPAMS) toolbox available online∗, but unfortunately this did not work as expected in our
experiments.

Several issues, including most implementation issues, are ignored in the brief overview of dictionary learning
algorithms above. Most important is the fact that the dictionary should be normalized, not necessarily in each
iteration, but often enough to keep the 2-norm of each column vector (atom) close to one. For details see the
referred papers.

2. DICTIONARY PROPERTIES

Dictionaries and frames are conceptually the same. Frame is the common name used in many theoretical
works,23,24 while the term dictionary has been more used in application oriented works and especially in the
sparse representation context.3 A family of elements {di} ⊆ H is called a frame for the separable Hilbert space
H if there exists constants A,B > 0 such that

A||x||2 ≤
∑

i

| < x, di > |2 ≤ B||x||2, for all x ∈ H. (9)

The indices i may be elements in any countable index set. The numbers A and B are called frame bounds. If
A = B the frame is called tight. Ignoring most technicalities, we simply let the dictionary be a real matrix
D ∈ IRN×K and assume N ≤ K. The columns of the dictionary are assumed normalized. The normalization
of the atoms is not an important restriction since it does not change the sparse representation capabilities of a
dictionary. The frame bounds are regarded as dictionary properties A and B.

2.1 Basic properties

A dictionary is an ordinary matrix, and as such common matrix properties might be relevant as dictionary
properties. The singular value decomposition (SVD) is important for matrices, and the SVD of D can be written
as

D = UΣV T , UUT = UTU = IN , V V
T = V TV = IK , Σ =



σ1 · · · 0
...

. . .
...

0 · · · σN · · · 0


 (10)

The singular values of D {σi}Ni=1 are real and non-negative and usually in descending order which is assumed
here. They give some important properties of the dictionary: The induced 2-norm of the matrix is equal to the
largest singular value and the upper frame bound is equal to the same value squared, i.e. B = ||D||22 = σ2

1 , the
lower frame bound is equal to the smallest non-zero eigenvalue squared (A = σ2

N , assuming full rank of D).

Two matrices that can be defined by the dictionary are the frame operator S = DDT and the Gram matrix
G = DTD. The eigenvalues of these matrices can be found from the singular values of D

S = DDT = UΣΣTUT = UΛNUT , G = DTD = V ΣTΣV T = V ΛKV T (11)

S and G have the same eigenvalues, since we have λi = ΛN (i, i) = ΛK(i, i) = Σ(i, i)2 = σ2
i for i = 1, 2, . . . , N . If

the dictionary is tight then all eigenvalues are equal. For a normalized dictionary the sum of the eigenvalues is

N∑

i=1

λi =
N∑

i=1

σ2
i = ||Σ||2 = ||D||2 =

K∑

i=1

||di||2 = K. (12)

Thus for a tight normalized dictionary all eigenvalues of the frame operator are λi = K/N . In general dictionaries
are not tight, and the λi-values are distributed according to 0 ≤ λi ≤ K and

∑
i λi = K. The distribution of the

eigenvalues indicates how the dictionary atoms are distributed on the unit ball in different directions, there are
more atoms pointing in the directions given by eigenvectors corresponding to large eigenvalues than in directions
given by eigenvectors corresponding to small eigenvalues.
∗http://www.di.ens.fr/willow/SPAMS/
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Figure 1. Different possible measures for distance or similarity between two dictionary atoms, i.e. column vectors, are
shown. ||di|| = ||dj || = 1 and β ≤ π/2 (if β > π/2 then simply replace dj by −dj).

Properties concerning the spread or clustering of dictionary atoms can be important in many contexts. We
have already seen that the upper frame bounds indicates the number of vectors pointing in the direction most
densely represented in the dictionary and that the lower frame bound indicates the number of vectors pointing
in the direction most sparsely represented in the dictionary. The distance between two normalized vectors can
be measured in many ways as shown in Fig. 1. Some possible measures are:
• cosine (coherence) µij = |dTi dj | = cosβij and 0 ≤ µij ≤ 1,
• angle βij = arccos |dTi dj | = arccosµij and 0 ≤ βij ≤ π/2,
• sine or representation error rij = ||dj − (dTi dj)di|| = sinβij and 0 ≤ rij ≤ 1, or
• direct distance ||di − dj ||.

Based on these measures, some basic dictionary properties can be defined quite naturally from how the dictionary
atoms relate to each other; βmin is the angle between the two closest dictionary atoms, and the mutual coherence
is cosine of this angle µ = cosβmin. The mutual coherence property is also used by Elad3 and by Donoho25

(denoted as M) among others. βavg is the average angle for all atoms to its closest neighbour, and the average
coherence is defined as µavg = 1

K

∑K
j=1 maxi 6=j |dTi dj |. Note that cosβavg 6= µavg.

Finally, βmse is the average angle of all pairs in the dictionary taken in the ‘mean-squared-error” sense.
The mse-properties needs some more explanation: The measure rij = sinβij is the error produced when atom
i is represented by atom j and the squared error is r2

ij = sin2 βij . Thus, the mean squared error is r2
mse =

1
K2

∑K
i=1

∑K
j=1 r

2
ij , and the mse-properties are defined by rmse =

√
r2
mse = sinβmse and µmse = cosβmse and

µ2
mse = 1− r2

mse = 1− 1
K2

K∑

i=1

K∑

j=1

r2
ij =

1
K2

(
K2 −

K∑

i=1

K∑

j=1

r2
ij

)
=

1
K2

K∑

i=1

K∑

j=1

(1− r2
ij)

=
1
K2

K∑

i=1

K∑

j=1

µ2
ij =

1
K2

K∑

i=1

K∑

j=1

(dTi dj)
2 =

1
K2
||DTD||2 =

1
K2
||ΛK ||2 =

1
K2

N∑

i=1

λ2
i . (13)

Since
∑N
i=1 λi = K it follows that µ2

mse is the sum of the eigenvalues (of S = DDT ) squared divided by the
squared sum of the eigenvalues, i.e µ2

mse = (
∑N
i=1 λ

2
i )/(

∑N
i=1 λi)

2. This ratio is a measure of the spread of the
eigenvalues. When all eigenvalues are equal the dictionary is tight and µmse has its minimal value µmse = 1/

√
N ,

the dictionary atoms are well spread with a large βmse = arccos(1/
√
N). The opposite case is when all dictionary

atoms are the same, then one eigenvalue is K and the others are zero and µmse has its maximal value µmse = 1
and the corresponding angel is small βmse = 0.

The mutual coherence property µ is based on only two dictionary atoms, while the µavg property is based
on K pairs, and the µmse property is based on all K2 pairs (including an atom to itself). Any two close atoms
can make µ close to one even if the rest of the atoms are well spread. µavg can be close to one even for a tight
dictionary, as when the dictionary is the concatenation of two orthogonal bases and one of the bases is only a



small twist from the other. For µmse to be close to one on the other hand, the dictionary atoms must truely be
clustered.

2.2 Sparse representation properties
For any signal vector x ∈ IRN and a normalized dictionary atom di we denote cosine of the (inner) angle between
them as µ(di, x) = |dTi x|

/||x||. The angle between the normalized dictionary D and the vector x is now defined
as the angle between the x vector and its closest dictionary column vector:

µ(D,x) = max
i
|dTi x|

/||x|| and β(D,x) = arccosµ(D,x). (14)

We define βgap as the angle between “the most difficult vector to represent by the dictionary” and its closest
dictionary atom, the corresponding coherence is µgap = cosβgap. The definition can be expressed as

µgap = min
‖x‖=1

max
i
|dTi x| and βgap = arccosµgap. (15)

The µgap property has been used earlier, denoted as dictionary distribution ratio B(D) by Liu et al.26 and as
I(λ) by Mallat and Zhang.27 Elad3 defined the decay factor as δ(D) = µ2

gap. We prefer the proposed name µgap
since it corresponds nicely with the other defined dictionary properties, and since it is the coherence of a vector
x placed in the largest “gap” of the dictionary. The worst case performance of matching pursuit algorithms can
be expressed using the gap-properties. Let rm be the matching pursuit representation error after m iterations,
selecting the best atom in each iteration. This representation error will be limited by27

‖rm‖ ≤ (1− µ2
gap)

m/2‖x‖ or ‖rm‖ ≤ (rgap)m‖x‖ where rgap = sinβgap. (16)

The ultimate test for a dictionary is to test it in a useful application, but this can hardly be called a dictionary
property as it depends on many factors other than the dictionary. For a fixed set of test data, a specific sparse
approximation algorithm, and a fixed sparseness s the sparse representation capabilities for a dictionary can be
defined by the resulting representation error. For images this can be measured by the peak signal to noise ratio
(PSNR). An alternative definition, which is more appropriate for images, is to measure the sparse representation
capability. This can be done as follows: Define a target PSNR, tPSNR, and from this find an error limit:
δerr = N · peak2 · 10−tPSNR/10, peak is usually 255. The error limit is used as a stopping criterion in a sparse
approximation algorithm, i.e. ‖x − Dw‖22 ≤ δerr. Finally, the sparse representation capabilities (SRC) for that
dictionary is defined as the average number of non-zeros coefficients in each sparse approximation:

SRC(D,Xt, tPSNR) =
1
L
||W ||0 (17)

Xt is a test set and W the corresponding coefficient matrix found by the sparse approximation algorithm. The
SRC value is easier to find than the more general µgap,s property.

2.3 Dictionary properties summarized
The suggested properties are summarized in Table 1. They are highly correlated and it may seem redundant to
present them all. But, in line with the redundant nature of the dictionary itself, why should we not allow for
some redundancy in its properties as well? Whether to use the β-properties or the µ-properties is a matter of
taste. In this work we will mainly use the µ-properties.

2.4 Difference between two dictionaries
Sometimes it is interesting to quantify the similarity or difference between two dictionaries, for example when
comparing a learned dictionary to a true underlying dictionary or to an initial dictionary. The measure should be
independent of the order of the columns, thus the matrix norm ‖D−D′‖ will not do. Denote the two dictionaries
D ∈ IRN×K and D′ ∈ IRN×K′ . The distance (similarity) can be quantified based on the angle defined in Eq. 14:

β(D,D′) = β(D′, D) =
1

K +K ′

( K∑

j=1

β(D′, dj) +
K′∑

j=1

β(D, d′j)
)
. (18)



Property Definition Property Definition

A lower frame bound, λN B upper frame bound, λ1

µ µ = maxi 6=j |dTi dj | = cosβmin βmin βmin = mini6=j βij = arccosµ

µavg µavg = 1
K

∑K
j=1 maxi6=j |dTi dj | βavg βavg = 1

K

∑K
j=1 mini 6=j βij

µmse µmse = 1
K

√∑N
i=1 λ

2
i βmse βmse = arccosµmse

µgap µgap = min||x||=1 maxi |dTi x| βgap βgap = arccosµgap

Table 1. Suggested properties for a normalized dictionary D are listed here. Note that µavg 6= cosβavg. βij is the angle
between atoms i and j, βij = arccosµij = arccos |dTi dj |. λi = σ2

i is an eigenvalue (of S = DDT ), λ1 is the largest one
and λN is the smallest one, σi is a singular value of D as in Eq. 10. The sum of the eigenvalues is

PN
i=1 λi = K.

This measure does not depend on an (optimal) pairing between the atoms in each dictionary, and K can be
different from K ′. We prefer to use the β-property and not a similar measure based on the coherence, since
β(D,D′) behaves like other distance measures. In other words β(D,D) = 0 and the triangle property is fulfilled
when D1, D2 and D3 have the same size, i.e. β(D1, D3) ≤ β(D1, D2) + β(D2, D3).

3. EXPERIMENTS AND PROPERTIES

Three experiments were conducted to learn about, and to quantify, how the dictionaries are affected by different
dictionary learning setups, including different learning methods and different choices of parameters. The main
results are presented in this section, and even more details on the experiments and more results are presented
on the web†. The first experiment uses RLS-DLA with different learning setups, the purpose is to find a suitable
parameter setup as well as to learn about the effect of using l0 versus l1 sparsity in learning. The second
experiment compares different dictionary learning methods, or variants of them, to each other. Finally, in the
third experiment the learned dictionaries are used in an image compression application.

Training and test data are generated from 8 by 8 patches of the Berkeley image segmentation set‡, only the
greyscale component is used equivalent to the definition of data set ‘A’ in Mairal.21 The mean is subtracted
from each patch thus the spanned space is reduced to be 63-dimensional even though each vector has 64 entries.
A fixed test data set, Xt of size 64 × 25600, is generated from randomly selected patches of the Berkeley test
images. When evaluating the SRC measure this set is used, together with the ORMP algorithm and the stopping
criterion of ‖r‖22 ≤ 1316 (or mean squared error for a pixel ≈ 4.52). In practice many patches will have a smaller
error and the resulting PSNR will usually be somewhat larger than 36 dB.

Let D be a 64×256 matrix. To get a feeling of “typical” dictionaries in this large space, the average properties
and their standard deviation for three dictionary sets as well as the properties of one specific dictionary are listed
in Table 2. The first set is 100 random Gaussian dictionaries, where each entry is normally distributed, then for
each atom, i.e. column vector, the mean is subtracted and the atoms are normalized to unit norm. The atoms
will be uniformly distributed on the surface of a unit ball in IR63. The second set consists of 100 dictionaries
where each atom is a randomly chosen vector from the training set, mean subtracted and normalized to unit
norm. These dictionaries are typical examples for what is used as initial dictionaries in our learning experiments.
The third set consists of 10 learned dictionaries, all learned using the same setup: RLS-DLA with λ0 = 0.996 as
learning algorithm, 2 millions training vectors processed, and target PSNR set to 40. Finally, the last dictionary
is the concatenation of 4 maximally separated orthogonal bases, the first 64 atoms are the standard unit vectors
and all the rest of the atoms have all values equal to ±1/8.

An important choice in dictionary learning is how to do the sparse approximation, i.e. how to find the sparse
representation coefficient vector wi for each training vector xi. It must be decided whether to use the l0 or the
l1 sparsity in Eq. 4, and which sparse approximation algorithm and corresponding stopping criterion to use.
†http://www.ux.uis.no/∼karlsk/dle/
‡http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/



Dictionary (64× 256) A B µ µavg µmse µgap β(D,D′) SRC
Random Gaussian mean 1.1205 8.67 0.510 0.373 0.140 0.139 68.07◦ 14.95

std 0.0675 0.25 0.027 0.003 0.000 0.005 0.14 0.10
From the images mean 0.0844 52.15 0.961 0.672 0.288 0.046 45.30◦ 11.17

std 0.0216 5.63 0.021 0.026 0.019 0.006 1.20 0.08
Learned dictionaries mean 0.0919 16.12 0.947 0.518 0.156 0.100 39.28◦ 8.42

std 0.0248 0.14 0.008 0.003 0.001 0.019 0.54 0.01
Orthogonal bases 4 4 0.125 0.125 0.125 0.125 10.87

Table 2. Properties for random Gaussian dictionaries, data dictionaries, learned dictionaries, and a dictionary which is
the concatenation of 4 maximally separated orthogonal bases. Details on these dictionaries are given in the text. The
β(D,D′) angle is given in degrees and measures the difference between two dictionaries of the same kind. SRC is as in
Eq. 17 and the other properties are defined in Table 1.

Here we use both the l1 norm with the LARS algorithm, and the l0 norm with the ORMP algorithm. Fast
implementations of both are available in the SPAMS software package. A target PSNR limits the representation
error used as the stopping criterion for both LARS and ORMP. In general there is also a choice of which dictionary
learning algorithm to use, including possible parameters, and the number of training vectors to process.

3.1 Experiment 1, RLS-DLA dictionaries

This RLS-DLA experiment uses three parameters; the initial forgetting factor, λ0, the target PSNR and the
vector selection method to use. λi slowly increases towards 1 in a fixed way and reaching 1 when 98% of the
total number of training vectors are processed, this number also being fixed (2 millions). Both ORMP and LARS
are used with target PSNR in the range from 29 to 46 and λ0 ∈ {0.996, 0.997, 0.998, 0.999, 0.9995}. An important
observation made in preliminary tests was that the dictionary properties in most cases, i.e. when λ0 was small
enough and the number of training vectors was large enough, were quite independent of the initial dictionary
and the specific training vectors used during learning. The properties of the learned dictionaries mainly depend
on the dictionary learning setup, i.e. the three mentioned parameters. We observed that, for a fixed choice of
parameters, the properties of several learned dictionaries were almost equal, but their distances between each
other, in the β(D,D′) measure, was noticeable and almost the same for any pair, see Table 2.

One dictionary was learned for each parameter combination, and the resulting B, µmse, µavg and SRC prop-
erties are shown in Fig. 2 and 3. Some variations in the dictionary properties are noticed. The properties B,
µmse and µavg all gradually decrease as the target PSNR increases. The only exception is for large target PSNR
and λ0 close to 1, where the impact of the initial dictionary may still be present. Most likely because having
λ0 closer to 1 moves the dictionary more slowly away from the initial dictionary, and a large target PSNR gives
small error and small update steps for the dictionary, see Eq.8. The SRC measure is calculated using ORMP and
target PSNR of 35, but learning with ORMP and a target PSNR of 40 achieved the best SRC measure. Using
ORMP, with increasing target PSNR, the achieved SRC decreases from 9 to its minimum of 8.4 (for PSNR = 40)
and then increases to 8.6. Using LARS on the other hand, the best SRC measures were with low values for the
target PSNR, within the used range the SRC measure increases from 8.5 to 8.9.

The most noticeable result of this experiment is the observation that using LARS gives dictionaries with
completely different properties than ORMP, clearly seen when comparing Fig. 2 and Fig. 3, especially noting the
scales on the y-axes. The essential difference between l0 and l1 sparsity obviously matters in dictionary learning.
The dictionaries learned using LARS are close to be tight (a tight dictionary has upper frame bound B = 4).
This may, in some applications, be a wanted property, but if the SRC measure is important the results show that
learning using ORMP is a little bit better than learning using LARS.

3.2 Experiment 2, dictionaries learned by different methods

In the second experiment we want to compare different learning methods to each other. Results are presented in
Table 3. Each line corresponding to different cases, and the resulting properties are averaged over 10 trials. The
first line depicts the properties of dictionaries learned by MOD, and the large-MOD variant, Eq. 5, was used. In
each iteration 1 to 10 random subsets (from the 50 available subsets, each with 20 thousand training vectors) were
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Figure 2. (Ex.1) This plot shows dictionary properties for dictionaries learned by RLS-DLA, one dotted line for each value
of λ0 equal to 0.996, 0.997, 0.998 and 0.999. Sparse approximation is done by ORMP and the used target PSNR is along
the x-axis. See text for more information.
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Figure 3. (Ex.1) This plot shows dictionary properties for dictionaries learned by RLS-DLA, one dotted line for each value
of λ0 equal to 0.998, 0.999 and 0.9995. Sparse approximation is done by LARS and the used target PSNR is along the
x-axis. See text for more information.



Dictionary h:mm Mtv A B µ µavg µmse µgap β(D,D′) SRC
1. MOD, ORMP 1:26 61 0.005 33.8 0.966 0.600 0.208 0.02 33◦ 8.63
2. K-SVD, ORMP 5:46 18 0.002 41.7 0.967 0.624 0.238 0.01 37◦ 8.77
3. MOD, LARS 0:47 25 1.99 6.42 0.704 0.505 0.129 0.29 36◦ 8.45
4. RLS-DLA, ORMP 1:06 5 0.11 17.9 0.948 0.523 0.160 0.12 36◦ 8.37
5. LS-DLA, ORMP 0:18 5 0.11 17.2 0.946 0.520 0.159 0.12 36◦ 8.37
6. ODL, ORMP 0:24 5 0.13 17.6 0.945 0.520 0.159 0.13 35◦ 8.35
7. LS-DLA, LARS 0:22 5 2.11 6.22 0.697 0.500 0.129 0.28 37◦ 8.48
8. ODL, LARS 0:28 5 0.13 22.3 0.871 0.548 0.180 0.01 29◦ 8.50

Table 3. (Ex.2) Each line corresponds to different cases of learning algorithms and parameters. The resulting dictionary
properties are averaged over 10 trials. h:mm is average time for learning and Mtv is millions of training vectors processed
during learning. β(D,D′) is a measure for the difference between two learned dictionaries in the same set. Since the µgap
properties are difficult to calculate, the given values are maximal values. A larger gap, i. e. smaller µgap, may exist in
the dictionary and for the almost tight dictionaries, case 3 and 7, the µgap property should probably be below 0.125 as it
is for the tight dictionary case 4 in Table 2.

used. A total of 1000 iterations were done, average learning time and the number of training vectors processed
are shown in Table 3. ORMP, with a target PSNR of 38, was used for sparse approximation. The second case
was similar to the first one except that K-SVD was used instead of MOD. Since K-SVD is considerable slower
than MOD, at least for the Matlab implementations used here, this set was learned using 500 iterations and 1
to 4 subsets used in each. The third case was like the first, except that the sparse approximation was done by
the LARS algorithm and target PSNR of 35. Here the dictionaries were learned using 400 iterations which were
enough for convergence, and 1 to 10 subsets were used in each iteration. Using K-SVD with the l1 norm in sparse
approximation, i.e. LARS, makes no sense since the K-SVD dictionary update step conserves the l0 norm but
modifies the l1 norm of the coefficients, and thus the actual coefficients will be neither l0 nor l1 sparse.

The next cases represent dictionaries learned by online algorithms. First, in case 4, we use the RLS-DLA as
it was originally presented, i.e. using Eq. 8 and updating the dictionary for each training vector. ORMP, with
target PSNR of 40, was used in the sparse approximation step, initial forgetting factor λ0 = 0.996, and 5 millions
training vectors were processed. To be able to compare RLS-DLA and ODL with each other in a setup where the
two algorithms are as equal as possible, case 5 and 6 are similar to case 4, now using the mini-batch variants of
LS-DLA and ODL. The mini-batch approach allows us to use the effective sparse approximation implementations
in SPAMS, the size of the mini-batches increases from 50 (in the beginning) to 1000 (in the end) training vectors.
Also note that the used values for λi in Eq. 6 are as λmi (here λi as in Eq. 8) and m is the number of training
vectors in the mini-batch. The used Matlab implementations of ODL and LS-DLA are identical except for the
dictionary update step which is according to Eq. 6 for LS-DLA and Eq. 7 for ODL. Finally case 7 and 8 are
similar to case 5 and 6, except for using LARS with target PSNR of 35 for sparse approximation, and larger
initial forgetting factor λ0 = 0.998.

Results are presented in Table 3. Each line corresponding to different cases, and the resulting properties
are averaged over 10 trials. The standard deviation is now omitted, it is small anyway as seen in the learned
dictionaries in Table 2. Studying the first two cases we see that the property values of the K-SVD dictionaries
lies in between the property values of the MOD dictionaries and initial dictionaries (set 2 in Table 2), which
might indicate that more iterations should be done to move the learned dictionaries further away from the initial
dictionary. Fig. 4 (a) show the dictionary update step in each iteration, i.e. the β(Di, Di−1) measure. Note that
for both case 1 and 2 the step sizes are small; near 1◦ when one subset (which is 20 thousand training vectors) is
used but a little bit larger for the very first iterations, then near 0.7◦ when 2 subsets are used, near 0.6◦ when 3
subsets are used, and near 0.5◦ when 4 subsets are used. For the K-SVD case the number of small steps, which
are not pointing in the same direction, is just not large enough to move the resulting dictionary as far away from
the initial dictionary as for the MOD case. A single trial, not 10 as used in Table 3 since it used 13 hours, was
done for a case with K-SVD and 1000 iterations. The resulting properties for this case was as for MOD in case
1.
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Figure 4. (Ex.2) These plots show how much the learned dictionary changes during iterations. The y-axis is the “dictionary
update step”, i.e. the distance β(D,D′) in degrees, note that the scale varies. D and D′ are one iteration apart for plot
(a), and 20 thousand traning vectors are processed between D and D′ for (b) and (c). The x-axis is iteration number,
(a), or the number of training vectors processed in millions (Mtv), (b) and (c). The cases are the same as in Table 3, 1
to 3 in (a), the (R)LS cases 4, 5 and 7 in (b), and in (c) the ODL case 6 and 8 as well as the case using original ODL
(SPAMS implementation) without forgetting factor (equivalent to λi = 1).

The properties for case 3 are quite different from the two previous cases. When changing from ORMP to
LARS in MOD (case 1 and 3) we get the same effect as when changing from ORMP to LARS in RLS-DLA
shown in the first experiment. The resulting dictionaries are almost tight for the LARS cases. The SRC measure
is better for MOD-LARS than it is for MOD-ORMP, as opposed to what we see for the LS-DLA cases 5 and 7 in
Table 3. Looking at dictionary update step in each iteration, Fig. 4 (a), we find a probably explanation for this.
The step size is approximately three times larger when using LARS compared to ORMP. MOD, and especially
K-SVD, with ORMP are not appropriate with large training set, since many (in this case ≈ 4000) iterations are
needed until convergence. MOD with LARS on the other hand converged much faster, after only 400 iterations
the dictionary properties were quite stable.

Comparing results for case 4 and 5 convinced us that whether to use the RLS-DLA or the LS-DLA (with small
enough mini-batches) is mainly an implementation issue. Case 6 is ODL with ORMP, and the only difference
from LS-DLA in case 5 is the dictionary update step. ODL does one step towards the LS-solution while LS-DLA
directly calculates the LS-solution. The results in Table 3 show that the two cases give dictionaries with almost
the same properties, ODL achieves a little bit better SRC measure. From the mathematical relation between Eq. 7
and the LS-solution it is reasonable to assume that the ODL dictionary update step is generally smaller than
the LS-DLA dictionary update step, and that ODL will learn a little bit slower. This assumption is confirmed
in Fig. 4; the observed update steps, i.e. β(Di, Di−20000), starts above 40◦ for LS-DLA in case 5 while it starts
below 35◦ for ODL in case 6. As iterations proceed the step sizes are getting more equal to each other and after
2.5 millions training vectors they are the same for the two methods. The dip, more pronounced in the ODL cases
than in the LS-DLA cases, in the step size at 0.5 millions training vectors processed is caused by an increase
in the mini-batch size at this point. With the initial forgetting factor used here, λ0 = 0.996, the ODL learning
seems to have a small advantage (considering the SRC measure).

Finally, looking at the last two cases in Table 3 we see that LS-DLA with LARS gives a dictionary which is
close to being tight, this is like MOD with LARS in case 3 and RLS-DLA with LARS in the first experiment.
The results for the two cases 3 and 7 are quite similar to each other. The result for ODL with LARS case 8
is surprising. Even if the two learning algorithms of case 7 and 8 are just as closely related to each other as
case 5 and 6, the results are not. ODL with LARS gives dictionaries that have completely different properties
than those from the LS-DLA with LARS. We cannot explain this yet; perhaps it will be helpful to carry out a
thorough investigation of dictionary development in the first iterations? It is in the first iterations that the ODL
update Eq. 7 and the LS-solution differ most. The results of case 8 are more equal to the results of case 6 (and
5) than to case 7, but there are noticeable differences between case 6 and 8 as well. The dictionary update steps
in Fig. 4 (c) are quite similar for cases 6 and 8, the most noticeable difference is in the very beginning where
case 8 has larger update steps.

The Search-Then-Converge scheme is important to get a fast learning. Cases 4 to 8, Fig. 4 (b) and (c), all
starts with large update steps as the forgetting factor is “small” in the beginning and as the forgetting factor



Dictionary B SRC 0.25 0.50 0.75 1.00 1.50
1. MOD, ORMP 27.9 8.56 34.32 37.75 39.79 41.25 43.52
2. K-SVD, ORMP 37.5 8.71 34.19 37.62 39.66 41.13 43.36
3. MOD, LARS 6.5 8.44 33.75 37.23 39.38 40.95 43.40
4. RLS-DLA, ORMP 18.4 8.36 34.17 37.64 39.74 41.23 43.58
5. LS-DLA, ORMP 16.8 8.35 34.15 37.61 39.70 41.21 43.57
6. ODL, ORMP 17.2 8.33 34.19 37.67 39.74 41.25 43.60
7. LS-DLA, LARS 6.3 8.46 33.52 37.04 39.21 40.82 43.31
8. ODL, LARS 22.3 8.49 34.11 37.56 39.61 41.11 43.42
D of size 64× 440 34.22 37.76 39.82 41.32 43.65
D of size 64× 256, learned from lena 31.7 10.40 34.60 38.06 39.93 41.24 43.14
DCT 34.02 37.41 39.54 41.09 43.44
JPEG 2000 35.29 38.60 40.48 41.91 44.13

Table 4. (Ex.3) Compression results for image lena and the dictionaries learned with different cases, as in Table 3. For
each dictionary the properties B and SRC are shown, and the other columns display the achieved PSNR for bit rates from
0.25 to 1.50. The last part of the table contains results achieved with two other dictionaries, and two other methods.

increases the update steps decrease and learning moves from the search phase to the converge phase. For case 1
to 3 Fig. 4 (a) shows that the dictionary update steps are smaller, thus the dictionaries move relatively slowly
away from the initial one. The step size depends on the number of subsets used (increasing in steps from 1 to 4
or 10) in each iteration, and as long as many iterations are done the dictionary may still move sufficiently away
from the initial dictionary. The update steps for ODL with LARS using the SPAMS implementation without
forgetting (λi = 1) is depicted in Fig. 4 (c) and this also shows small update steps. The dictionary change for the
first 20 thousand vectors is ≈ 18◦, and quickly decreasing as learning goes on, an is only ≈ 1◦ from 180 to 200
thousand iterations, and as iterations progress continuing to decrease towards zero. Probably the dictionary does
not move sufficiently away from the initial dictionary as the final difference is β(D,D0) ≈ 34◦. The properties of
this case, B = 32, µmse = 0.20 and SRC= 9.6, indicate that case 8 (ODL with forgetting factor) is more favorable.

3.3 Experiment 3, image compression

In this experiment the learned dictionaries are used in an image compression application. Exactly the same
compression scheme is presented in Ref. 6 and here only a brief overview is given: The image to be compressed is
divided into 8 by 8 patches and arranged as column vectors in a matrix X. The mean value, the DC component,
is extracted for each patch, quantized and compressed separately using a predictive method and a Huffman coder.
Then the sparse matrix W is found using sparse approximation of X with the supplied dictionary D. We use
ORMP with representation error as stopping criterion, and the representation error limit is adjusted to achieve
different bit rates. The non-zero coefficients in W are quantized, bin size set so that the added error corresponds
to a reduction of PSNR by 0.4–0.5 dB. Finally, the quantized values and the position information are entropy
coded.

One learned dictionary for each of the 8 cases presented in Table 3 is used with this compression scheme.
Since 10 dictionaries were learned for each method, the one with lowest SRC measure is used here, thus the
particular values for B and SRC in Table 4 are not exactly as the mean values shown in Table 3. The compression
results are presented in Table 4 and Fig. 5. Also included in Table 4 are results for two other dictionaries: The
first one was learned using another set of training images6 (probably more related to the lena image than the
training images used here) and a more redundant dictionary of size is 64×440. The second one was learned using
patches from the lena image as training set and the target PSNR was 38, the learning method was RLS-DLA
with ORMP. For the sake of comparison, the results for a DCT based compression scheme is given, the quantized
DCT coefficients are compressed in a way that exploits the structure in the coefficients and using the same type
of entropy coder as in the dictionary compression scheme. Finally, the Matlab implementation of the JPEG 2000
compression scheme are presented.

Comparing the compression results for the 8 learned dictionaries there are no large differences. The most
pronounced is that the almost tight dictionaries, 3 and 7, are not as good as the other ones, especially at low bit
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Figure 5. (Ex.3) This figure shows the compression results for different dictionaries on test image lena.

rates. The three dictionaries with almost the same properties (and the best SRC measures) from case 4, 5 and 6
achieve very similar compression results, and are best at high bit rates. For bit rates below 1 the MOD ORMP
dictionary did best. It is also interesting that the dictionary learned from lena patches were only best for low
bit rates, i.e. where the PSNR is in the neighbourhood of the target PSNR during learning.

4. CONCLUSION

In this paper, we have presented several dictionary properties which were subsequently used to characterize
learned dictionaries. The dictionaries were learned using a combination of different learning algorithms, parame-
ters and sparse approximation methods, and using a fixed dictionary size and an almost infinite set of training
vectors from natural images. Especially the proposed measure for difference between two dictionaries, β(D,D′),
can be helpful in dictionary learning as it can tell how much the dictionary changes during learning, both the
distance to the initial dictionary and to one of the previous dictionaries.

The other properties are useful for characterizing and grouping of dictionaries. It was shown that different
dictionaries learned by the same setup have properties very close to each other and that dictionaries learned
by different methods, and different parameters, belonged to different groups. Even so, we were not able to find
a clear correlation between any property, not even the sparse representation capability SRC measure, and the
performance of the dictionary in an image compression application.

How useful are these dictionary properties? At this point we are not sure, but we have gained new insight
during this work. For example, we were initially surprised by the differences in the ”LARS-dictionaries” and
”ORMP- dictionaries”, however by closer inspection it makes perfectly sense. We are aware of that many new
dictionary learning algorithms are presented lately, even though we have chosen to focus on a limited number.
And as such it could be beneficial to compare learned dictionaries by more than just mutual coherence.
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