
Energy Minimization by α-erosion for
Supervised Texture Segmentation

Karl Skretting and Kjersti Engan

Department of Electrical Engineering and Computer Science,
University of Stavanger, Norway.

Abstract. In this paper we improve image segmentation based on tex-
ture properties. The already good results achieved using learned dictio-
naries and Gaussian smoothing are improved by minimizing an energy
function that has the form of a Potts model. The proposed α-erosion
method is a greedy method that essentially relabels the pixels one by
one and is computationally very fast. It can be used in addition to, or
instead of, Gaussian smoothing to regularize the label images in super-
vised texture segmentation problems. The proposed α-erosion method
achieves excellent results on a much used set of test images: on average
we get 2.9% wrongly classified pixels. Gaussian smoothing gives 10% and
the best results reported earlier give 4.5%.

1 Introduction

Image segmentation has many important applications in the image processing
field, mainly since it is a common step in scene interpretation, and it is used
in areas such as medical diagnostics, geophysical interpretation, industrial au-
tomation and image indexing. For image segmentation, edges and colors are
often more important features than texture. Nevertheless, the texture property
is relevant in many image processing applications [11]. An important benchmark
application to test how well a system can utilize texture information that may
be present in an image, is to segment the image based on texture properties
alone. This is what we do here.

Texture segmentation finds a boundary map between different texture re-
gions of an image. This map may be given by a labeling L which assigns a label
Lp ∈ {1, 2, . . . , C} to every pixel p ∈ P of the observed image, and C is the
number of candidate texture classes. A common way to label the image is to
associate a feature vector xp to every pixel in the image and then do common
vector classification. This approach, however, ignores the fact that texture re-
gions should be piecewise constant in the labeling. Gaussian smoothing of the
features before classification will give larger segments and has been much used
[13].

An alternative to Gaussian smoothing is Energy Minimization (EM) [1–3].
For each pixel (feature vector) an associated cost vector yp is calculated, element
c gives the cost (energy) for assigning class c to this pixel. The cost may be the

estimated negative log probability for pixel p belonging to class c. The set of

energy images R = {R(c)}Cc=1, where pixel p in energy image c is R
(c)
p = yp(c),

can now be used to calculate the data cost for a given labeling L. In addition
to the data term Ed(·) a smoothing term Es(·) is added to the energy function,
thus the problem of finding the “best” labeling can be formulated as an energy
minimization problem using

E(L,R) = Ed(L,R) + Es(L). (1)

When piecewise constant labeling is desired the Potts model is a popular choice
for the smoothing term. It can be formulated as equation (18) in [3]:

E(L,R) =
∑
p∈P

R(Lp)
p +

∑
p,q∈N

up,q · (Lp ̸= Lq). (2)

R
(Lp)
p is the cost (energy) associated with assigning label Lp to pixel p. N is the

set of all neighboring pixel pairs and (Lp ̸= Lq) is a logical expression evaluating
to 1 if the two labels are different. The factor up,q is independent of the labeling
but may depend on the pair (p, q) [3].

To minimize an energy function of the form as in Eq. 1 or Eq. 2 is in general
an NP-hard problem [3] except for some simple cases; the two label-problem can
be minimized via graph cuts [7]. One method to approximately minimize the
energy function for the several-label problem is to start with an initial labeling
and then do a sequence of moves; each move may change the labeling of some of
the pixels under consideration. Two popular moves are the α-β-swap-move where
the optimal division between the two labels in a two label region is found, and the
α-expansion-move where “not-α-pixels” may be relabeled as α [3]. The optimal
solution for each of these two moves can be found by graph-cuts-algorithms.

A crucial point for the success of EM is that the energy function Eq. 1
reflects the texture segmentation. For many test images this is often only an
approximation where the ground truth labeling Lgt gives a higher value for the
energy function than the value obtained by EM using expand-moves Lex or
swap-moves Lsw, as seen in Fig. 3. In these cases further improvement in the
segmentation can be achieved by: 1) Better observations and better features
which gives better cost vectors and energy images. This is important, but in
this work we do not investigate this part any more but simply accept a method
to make feature vectors that have worked well previously [16]. 2) Better and
more sophisticated energy function, more advanced forms are proposed in [6,
4], may improve segmentation. Both how to define a better form, and then
how to minimize the energy function, are difficult tasks which we here leave to
future work. 3) Inferior method for energy minimization, i.e. even if the method
gives higher energy than another method it may be better when it comes to
segmentation. This latter approach is used in this work. We propose a method
that usually does not find the minimum of the energy function, even though all
the moves it makes reduce it. The algorithm is designed such that each move tries
to reduce the number of segments in the labeled image, and in this way follows

Test
image

· ···

···

···R(c)

R = {R(c)}Cc=1

C energy images

�� �SA

xp

N × 1

yp

C × 1

-
- - -

?

C training

images

···

··· D(c)

···

···

C dictionaries

size N ×K

�� �DL- 6

r
Ler

(Lsw)

�� �EM --

LGσ

�� �Smooth --

Lmin

�� �Min.sel. --

Fig. 1. The Frame Texture Classification Method (FTCM). Dictionary Learning (DL)
learn one dictionary with K atoms for each candidate texture. The feature vector xp is
made from a neighborhood of pixel p. Sparse Approximation (SA) uses the candidate
dictionaries and gives the energy vector yp where element c is pixel p in error image
R(c). Different labelings are made by the minimum selector, the Gaussian smoothing,
and the energy minimization (EM) methods.

a path that is intuitive in image segmentation (few segments). In addition the
proposed method is fast, up to 100 times faster than the graph-cuts-methods.

2 Frame Texture Classification Method (FTCM)

The Frame Texture Classification Method (FTCM) [14, 16] is used to generate
the data term in the energy function of Eq. 1, an overview is shown in Fig. 1.
It is based on sparse representation and dictionary learning, for details on these
parts see [5, 15].

FTCM generates a simple feature vector xp for each pixel p in a test image
using pixel values from its neighborhood directly. Sparse approximations of xp

are made using dictionaries learned for each of the candidate textures. An energy
vector yp is then calculated from the approximation errors,

yp(c) = R(c)
p = ∥xp −D(c)w(c)

p ∥2. (3)

where w
(c)
p is the K × 1 sparse coefficient vector used when vector xp is approx-

imated by dictionary D(c). A simple segmentation scheme can be to assign class
labels for each pixel, according to the minimum selector method

Lmin
p = c if R(c)

p ≤ R(k)
p ∀ k. (4)

Segmentation can however be substantially improved by smoothing the C energy
images {R(c)}Cc=1 prior to the final labeling. A common smoothing approach has

L- L′=L -
make or
update

segQ

��
@@��

@@s=
top

empty

ok
�
�
� ?

-
L

- relabel
p in L′

-
make or
update
pixQ
for s

��
@@��

@@p=
top

empty

ok

?

�

�
��

@
@@�

��

@
@@E(L′)

<
E(L)

true

?

����
L=L′����

6

Fig. 2. The main flow for the erode algorithm. The input labeling L is processed
segment by segment, the unprocessed segments are kept in a queue, segQ. The smallest
segment, s from the top of the queue, is processed by relabeling the pixels one by one
in L′ and if this improves energy the labeling L is updated (bottom right box in figure).

been to use the Gaussian low-pass filter Gσ(·) where the parameter σ gives the
width of the filter. The smoothed labeling can be denoted:

LGσ
p = c if Gσ(R

(c))p ≤ Gσ(R
(k))p ∀ k.

3 Erode algorithm for energy minimization

The energy function used here is a variant of the Potts model Eq. 2, restricted
to 4-neighborhood N4 and 8-neighborhood N8 systems:

E(L,R) =
∑
p∈P

R(Lp)
p +

λ

k4

(∑
p,q∈N4

(Lp ̸= Lq) + b
∑

p,q∈(N8\N4)

(Lp ̸= Lq)
)
. (5)

where λ gives the weight of the smoothing term and k4 = |N4| =
∑

p,q∈N4
1.

The factor b ∈ [0, 1] gives the relative weight for corner connected pixels pairs
to side connected pixels pairs. For the data term the set of the C energy images
R = {R(c)}Cc=1 is scaled such that Ed(L

min, R) = 0 and Ed(L
max, R) = 1. The

labeling Lmin is defined in Eq. 4 and Lmax is defined as Lmax
p = c if R

(c)
p ≥

R
(k)
p ∀ k.
The proposed energy minimization algorithm is a greedy algorithm that re-

duces the value of the objective function in each move, an overview is shown in
Fig. 2. The main idea behind the algorithm is quite simple, it is based on the
assumption that removing a small segment is more likely to reduce the value of
the objective function than to remove a larger segment. A segment is defined as
a 4-neighborhood connected component of the current labeling L. The α-erosion
method starts with the current labeling and do a sequence of α-erode-moves, as
described below. The labeling after all the α-erode-moves is denoted Ler, and an
example can be seen in Fig. 3d. The second idea is that the border between two
segments should be smooth, here we found that using an extra erode-move (or
swap-moves) on the border region worked well, doing these moves the labeling
is denoted as Ler+, an example can be seen in Fig. 3e.

Each erode-move considers all pixel within one label segment, s in Fig. 2. A
queue of the pixels pixQ is made, it is ordered by the effect relabeling this pixel

a) Test image b) Ground truth Lgt c) Gaussian filtering LG3

33 ms, error rate 21.41%
E = Ed + λEs: 0.3976 = 0.3487 + 0.0489 0.6531 = 0.3126 + 0.3405

d) α-erosion Ler e) α-erosion + border Ler+ f) α-β-swap Lsw

35 ms, error rate 4.05% 56 ms, error rate 2.61% 2255 ms, error rate 4.50%
0.4001 = 0.3425 + 0.0576 0.4001 = 0.3470 + 0.0531 0.3883 = 0.3414 + 0.0469

Fig. 3. Test image number 4 and different labeling results. The second line below each
image shows the execution time (in ms) and the error rate, the third line shows the
value of the objective function, E = Ed + λEs, here λ = 3 (and b = 0.7 in Eq. 5).
The label images are hopefully shown in color but a grayscale image will also show the
different segments even though the center segment and the bottom segment then look
quite similar to each other. The problem with corners is because the smoothing term
favors short, rather than straight, border lines.

will have on the objective function. The pixels are now relabeled and removed
from the top of the queue, and the remaining queue is updated. In this way it
is like the surrounding segments “eat” the pixels of the segment s one pixel at
a time, we may also say that the segment is eroded. If the objective function
value actually does decrease after the whole segment is “eaten” the “meal” is
accepted, i.e. the segment is relabeled. If not the labeling is kept as it was. After
a segment is relabeled the segment queue segQ is ordered by size again, i.e.
updated. The α-erode-move is tried on all segments smaller than a given limit
in the label image.

4 Experiments and discussion

The training and test grayscale texture images used here are from the Outex test
suites [10] and are available from Outex web page1. The test set Contrib SS -
00000 consists of 12 test images. It has been used in several papers on texture
segmentation; some results are collected in Table 1. The test images are shown in
[13, 8] and on the UiS web page2 where also more results and some Matlab files
used in this paper can be found. The UiS web page also gives more details on
how the parameters, like dictionary size N ×K, sparseness factor s, and factors
λ and b in Eq. 5 were selected, many are simply used as in earlier papers [16, 15]
and some are set empirically.

The results for the fourth test image are presented in Fig. 3. The data term
was made by FTCM with dictionary size 17 × 200. Order recursive matching
pursuit (ORMP) was used for sparse approximation, and the target sparseness
factor was s = 3. Learning was done using a mini-batch variant of RLS-DLA [15]
using a forgetting factor starting at 0.996 and growing towards 1 during learning,
processing 4 million training vectors (many are reused) for each dictionary. For
each test image the sparse representations, using only the relevant dictionaries,
give the set of energy images R. In Fig. 3 the Gaussian smoothing labeling LG3

is shown as this is used as initial labeling for the erode- and swap-moves. Energy
minimization is done using α-erosion as described in Sec. 3, both the labeling
Ler and Ler+ are shown in Fig. 3. Also the labeling using only α-β-swap-moves
until convergence Lsw is shown. The labeling for α-expansion-moves Lex were
similar to Lsw and is not shown.

The results of the proposed method are compared to those reported by other
works in Table 1. Randen used filtering methods, Ojala Local Binary Pattern
(LBP) and Mäenpää Multi-Predicate (MP) LBP. Skretting used FTCM with
reconstructive dictionaries and Gaussian smoothing. Mairal used learned dis-
criminative dictionaries and EM by α-expansion-moves (D-EMex). The last line
of Table 1 shows the results for the proposed method, i.e. the α-erosion method
followed by erode-moves to straighten the border lines.

Table 2 also shows results for Gaussian smoothing, α-β-swap and α-expansion,
and erode with and without extra border region erode-moves. The results for
Gaussian smoothing are only marginally better than results of [14], average for
the test images 1 to 9 is 12.95% errors, in [14] it was 13.2%, Table 1. The small
improvement is because the 17× 200 sized dictionaries used here are marginally
better than the ones used ten years ago, sized 25 × 100. The major improve-
ment here is due to the energy minimization (EM) used for regularization. All
EM methods do significantly better than Gaussian smoothing. The results for
the α-β-swap Lsw and α-expansion Lex, both using λ = 1.5, are comparable to
what Mairal reported for discriminative dictionaries in [9]. The proposed meth-
ods Ler and Ler+, here using λ = 2.0, are both fast and effective, as seen in
Table 2. Especially, using extra erode-moves on border regions Ler+ achieves

1 Outex web page: http://www.outex.oulu.fi/
2 UiS web page: http://www.ux.uis.no/~karlsk/tct/

Paper and method Avg. 1-9 Avg. 1-12

Randen 1999 (best) [13] 24.1 18.4
Mäenpää 2000 MP-LBP [8] 13.8 10.9
Skretting 2001 FTCM [14] 13.2 -
Ojala 2001 LBP [12] 15.2 12.4
Mairal 2008, D-EMex [9] 5.84 4.50
This paper, FTCM-EMer 3.63 2.87

Table 1. Reported average error rates for texture classification on the set of test
images. The second column is average for images 1 to 9, and the last column is average
for all 12 test images.

impressing segmentation. Using extra swap-moves on border regions, this case is
not included in Table 2, also worked very well. The execution times were 10-50
percent of Lsw, and for one case (λ = 3) the achieved average error rate was
impressing 2.74%.

5 Conclusions

The proposed α-erosion method is a greedy method that tries to minimize an
objective function based on the Potts model and can be used to regularize a
label image. It is shown that the α-erosion method achieves results close to
those achieved by methods based on the graph-cut algorithm, i.e. the α-β-swap
and α-expansion methods, but is much faster.

For a common set of test images the average segmentation error rate is even
better for the α-erosion method than for the graph cut based methods, even
though the achieved values for the objective function are not. The best average
error rate achieved here (2.74%) is better than all earlier reported results.

References

1. J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statis-
tical Society. Series B (Methodological), 48(3):259–302, 1986.

2. Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Machine
Intell., 26(9):1124–1137, September 2004.

3. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. IEEE Trans. Pattern Anal. Machine Intell., 23(11):1222–1239,
November 2001.

4. A. Delong, L. Gorelick, O. Veksler, and Y. Boykov. Minimizing energies with
hierarchical costs. Int. J. Comput. Vision, 100(1):38–58, October 2012.

5. M. Elad. Sparse and Redundant Representations, from Theory to Applications in
Signal and Image Processing. Springer, New York, USA, 2010.

6. P. Kohli, L. Ladický, and P. H. S. Torr. Robust higher order potentials for enforcing
label consistency. Int. J. Comput. Vision, 82(3):302–324, May 2009.

image Gaussian filter Energy minimization Execution time [s]

no. LG3 LG12 Lsw Lex Ler Ler+ LG3 Lsw Ler Ler+

1 6.08 8.15 3.31 3.38 4.34 2.00 0.038 1.037 0.026 0.072
2 15.42 10.85 2.85 2.75 3.88 3.24 0.037 2.123 0.032 0.068
3 25.33 11.41 2.56 2.56 3.47 4.01 0.038 2.961 0.033 0.063
4 21.41 9.31 4.34 4.34 5.08 2.55 0.040 1.304 0.031 0.064
5 18.20 6.57 2.47 2.47 3.86 1.26 0.040 2.000 0.028 0.058
6 33.69 21.25 10.56 10.74 7.98 6.72 0.369 26.1 0.241 0.334
7 37.09 19.99 3.80 8.49 4.20 4.14 0.355 25.7 0.238 0.317
8 34.94 16.03 12.77 12.68 6.23 4.80 0.153 11.9 0.106 0.151
9 38.57 13.02 2.07 2.02 5.61 3.90 0.155 11.5 0.107 0.160

10 2.27 0.34 0.57 0.57 0.66 0.42 0.038 0.172 0.032 0.064
11 2.44 2.04 1.09 1.09 1.50 0.61 0.034 0.278 0.031 0.060
12 12.00 1.91 3.79 3.79 5.55 0.70 0.033 0.737 0.043 0.080

Average 20.62 10.07 4.18 4.57 4.36 2.87

Table 2. Percentage of wrongly classified pixels for the 12 test images and execution
time for different methods. Note that Ler+ use extra erode-moves on border regions,
as in Fig. 3e.

7. V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts. IEEE Trans. Pattern Anal. Machine Intell., 26:147–159, 2004.

8. T. Mäenpää, M. Pietikäinen, and T. Ojala. Texture classification by multi-
predicate local binary pattern operators. In Proc. ICPR, 2000.

9. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative learned
dictionaries for local image analysis. In 2008 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, June 2008.

10. T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllönen, and S. Huovinen.
Outex - new framework for empirical evaluation of texture analysis algorithms.
Proc. 16th Int. Conf. Pattern Recognition, 2002.

11. T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Machine Intell., 24(7):971–987, July 2002.

12. T. Ojala, K. Valkealahti, E. Oja, and M. Pietikäinen. Texture discrimination with
multidimensional distributions of signed gray-level differences. Pattern Recognition,
34(3):727–739, March 2001.

13. T. Randen and J. H. Husøy. Filtering for texture classification: A comparative
study. IEEE Trans. Pattern Anal. Machine Intell., 21(4):291–310, April 1999.

14. K. Skretting. Sparse Signal Representation using Overlapping Frames. PhD the-
sis, NTNU Trondheim and Høgskolen i Stavanger, October 2002. available at
http://www.ux.uis.no/~karlsk/.

15. K. Skretting and K. Engan. Recursive least squares dictionary learning algorithm.
IEEE Trans. Signal Processing, 58:2121–2130, April 2010.

16. K. Skretting and J. H. Husøy. Texture classification using sparse frame based rep-
resentations. EURASIP Journal on Applied Signal Processing, 2006, 2006. Article
ID 52561.

