
IMAGE COMPRESSION USING LEARNED DICTIONARIES BY RLS-DLA AND
COMPARED WITH K-SVD

Karl Skretting and Kjersti Engan

University of Stavanger
Department of Electrical Engineering and Computer Science

4036 Stavanger, Norway. karl.skretting@uis.no

ABSTRACT

The recently presented recursive least squares dictionary
learning algorithm (RLS-DLA) is tested in a general im-
age compression application. Dictionaries are learned in
the pixel domain and in the 9/7 wavelet domain, and
then tested in a straightforward compression scheme.
Results are compared with state-of-the-art compression
methods. The proposed compression scheme using RLS-
DLA learned dictionaries in the 9/7 wavelet domain per-
forms better than using dictionaries learned by other
methods. The compression rate is just below the JPEG-
2000 rate which is promising considering the simple en-
tropy coding used.

Index Terms— dictionary learning, RLS-DLA,
sparse approximation, overcomplete dictionary, image
compression

1. INTRODUCTION

Signal representation using sparse approximations and
overcomplete dictionaries has been given considerable at-
tention in recent years, especially in the area of com-
pressed sensing, and can also be useful in other applica-
tions like texture classification, compression and denois-
ing. We define a dictionary as a collection of finite atoms
{dk}Kk=1, where dk ∈ RN , with K > N a redundant dic-
tionary is implied. Letting the atoms be columns in a
matrix D ∈ RN×K we can represent or approximate the
signal vector as a sparse representation over the over-
complete (redundant) dictionary:

x̃ =
K∑

k=1

w(k)dk = Dw, r = x− x̃ = x−Dw, (1)

with a sparseness constraint on the coefficient, or weight,
vector w, ‖w‖0 ≤ s or ‖w‖1 ≤ s1. The l0 pseudo-norm
‖ · ‖0 is the number of non-zero elements. Finding the
optimal sparse coefficient vector can be formulated as

wopt = arg min
w
‖w‖0 + γ‖x−Dw‖22. (2)

This is what we call the vector selection problem and
it can be addressed and approximated in different ways.
Changing the l0 norm with the l1 norm is one option
leading to basis pursuit and related algorithms, match-
ing pursuit techniques are other options. We use order
recursive matching pursuit (ORMP) in this work. If it is
possible to find a good sparse solution to (1), the signal
belongs to the sparseland model according to [1]. There
are two main alternative ways to construct the dictio-
nary D; a general chosen dictionary or an application
specific learned dictionary. We are concerned with the
latter approach.

It is well known that a sparse model fits natural im-
ages quite well, this is exploited in DCT and wavelet
coding where many of the coefficients are quantized to
zero. A sparse model also seems to fit the way the human
visual system perceives an image [2]. Redundant dictio-
naries have successfully been used for sparse representa-
tion of images earlier [3], and also for image compression
[4, 5, 6]. The contributions of this work are that dictio-
nary learning is done by our new algorithm RLS-DLA
[7] which improves the sparse representation capabilities
and that dictionaries with overlapping atoms are effec-
tively generated in the wavelet coefficient domain which
removes blocking artifacts. The experiments presented
show that each idea improves the compression rate, and
used together they give good compression results both
compared with DCT and wavelet based compression.

2. DICTIONARY LEARNING

Dictionary learning is the task of learning or training a
dictionary such that it is well adapted to its purpose,
i.e. sparse representation of a class of signals. When
the sparse representation is used in an image compres-
sion scheme, entropy coding of the quantized coefficients
and their positions should follow the sparse representa-
tion part. Thus the learned dictionary should give a
good sparse approximation of images, and it should also
be of moderate size, so that the position information is



acceptable.
A common setup for the dictionary learning problem

[1] starts with access to a training set, {xl}Ll=1, xl ∈ RN ,
and the aim to find both a dictionary, D ∈ RN×K , and a
corresponding coefficient set {wl}Ll=1, wl ∈ RK to satisfy
(1). Let X denote a matrix with xl as columns and W
a matrix with the corresponding weights wl as columns.
The dictionary learning problem can be formulated as an
optimization problem with respect to W and D:

{Dopt, Wopt} = arg min
D,W

‖W‖0 + γ‖X −DW‖2F (3)

where ‖W‖0 =
∑L
l=1 ‖wl‖0 is the total number of non-

zero weights and ‖X − DW‖2F =
∑L
l=1 ‖rl‖22. This is a

very hard optimization problem, and a practical relax-
ation is to split the problem into two parts, iteratively
solved: 1) Keeping D fixed, find W , and 2) Keeping W
fixed, find D. This strategy is adopted in both the iter-
ative least squares dictionary learning algorithms (ILS-
DLA)1 and partly in K-SVD2 [5]. Part 1) is reduced to a
vector selection problem (2). Part 2) has W fixed and the
problem is reduced to the minimization of ‖X −DW‖2F ,
so the ILS-DLA update is the least squares solution:

D = (XWT )(WWT )−1. (4)

This optimization strategy has two major drawbacks.
First, the choice of an initial dictionary, D0, is crucial as
the method “converges”, if it converges at all, towards a
local minimum close to D0, and there is no obvious good
way to select D0. Secondly, having few training vectors,
L small, gives a risk of overtraining and having L large
gives large execution times.

The RLS-DLA [7] addresses these problems by us-
ing a scheme which continuously updates the dictionary.
In the derivation of RLS-DLA a ‘time step’ i is intro-
duced and the matrices Xi = [x1, x2, . . . , xi] of size N×i,
Wi = [w1, w2, . . . , wi] of size K × i and Ci = (WiW

T
i )−1

are defined, as well as the dictionary Di which is the
least squares minimization of ‖Xi − DWi‖2F , i.e. Di =
(XiW

T
i )(WiW

T
i )−1. At each step a new training vec-

tor xi is supplied and the corresponding weights wi are
found using the previous (most recent) dictionary Di−1

and a vector selection algorithm. Using the matrix in-
version lemma (Woodbury matrix identity) on Ci we get
the following simple updating rules

Ci = Ci−1 − αuuT , (5)
Di = Di−1 + αriu

T , (6)

u = Ci−1wi and α = 1/(1 + wTi u). ri = xi −Di−1wi is
the representation error.

1The family of MOD algorithms is denoted ILS-DLA in [8]
2here the non-zero positions in W remain fixed, but the coeffi-

cient values are changed

Introducing an adaptive forgetting factor λi ≤ 1 in
step i, as described in [7], makes the dictionary a lot less
dependent on the initial dictionary as well as improv-
ing convergence properties. This scheme is denoted the
Search-Then-Converge scheme. It will change the update
in (5) to Ci = (λ−1

i Ci−1)− αuuT and u = (λ−1
i Ci−1)wi,

while equation (6) and α are unchanged.
For images it is (usually) no problem to get access

to a lot of training vectors, and the initial dictionary
is as important here as for any other application. This
makes the RLS-DLA a reasonable choice for dictionary
learning. For example, the images in Fig. 1 have 32768
non-overlapping 8× 8 patches, and more than 2 million
if the patches may overlap. Each patch is made into a
training vector simply by lexicographically ordering of
the pixels. The training vectors are picked in a random
order from the set of training images and presented for
the RLS-DLA algorithm. The K first random training
vectors are used to make the initial dictionary, which
soon will be forgotten, and to set the initial Ci matrix.
Then, each new training vector xi is processed in two
parts. First the weights wi are found by a Matching Pur-
suit algorithm (or any other vector selecting algorithm),
using as stop criterion that the approximation error is
below a limit ε. This limit can initially be calculated
based on a target PSNR and it may be adjusted while
learning progress. The second part updates the dictio-
nary and the Ci matrix. The RLS-DLA equations (5)
and (6) preferable including a forgetting factor λi, are
applied. Once in a while we may also want to normalize
the dictionary, i.e. scale each atom to get 2-norm equal
to 1. This must be done as described in [7] and it also
includes a scaling of the Ci matrix.

In [3] it was shown that a better sparse approxima-
tion is possible if the dictionary atoms are allowed to
overlap with the neighboring patches, another benefit of
overlapping is that blocking artifacts are avoided. This
corresponds to how the wavelet basis functions overlap
(JPEG-2000) while the DCT basis functions are block-
oriented (JPEG). One easy way to design a dictionary
with overlapping atoms is to generate the vectors in the
coefficient domain of a wavelet. For example by trans-
forming the image using a three level two dimensional
9/7 wavelet transform and by forming the vectors from
the 8× 8 patches in the coefficient domain. This is what
we call the 9/7 wavelet domain or simply 9/7 in the rest
of this work.

3. THE COMPRESSION SCHEME

A dictionary learned by the RLS-DLA scheme described
in the previous section, or by another method, can be
used in an image compression scheme with the following
parts



1. Form the set of vectors from non-overlapping
patches of the image, or from patches of the wavelet
coefficients when the dictionary is learned in the
wavelet domain. This set is denoted {xj}Lj=1 or X.
As in other compression schemes (JPEG) the DC
components, which themselves form a downsam-
pled version of the original image, are quantized
and compressed separately. A predictive method
similar to DPCM, followed by Huffman coding of
the prediction errors, is used here.

2. Find the sparse matrix W using sparse approxima-
tion of X with the dictionary D. We use ORMP
for these L vector selection problems (2), with the
representation error as stopping criterion, the limit
ε is found from a given target PSNR.

3. The non-zero weights are quantized, introducing
some more error and thus decreasing the PSNR.
We use a uniform quantizer with thresholding;
zero-bin is twice the size of the other bins. Based
on some preliminary tests we found that setting
the bin size to a value that gives a decrease of 0.4
to 0.5 dB in PSNR is appropriate.

4. The quantized W matrix is entropy coded. First
the non-zeros entries of W (taken columnwise) are
put into one sequence and the position information
in another sequence, i.e. the number of zeros pre-
ceeding each non-zero entry is stored. Then these
two sequences are Huffman coded, using the recur-
sive splitting algorithm in [9], and formed into a
bit sequence.

Note that the dictionary is not included in the com-
pressed file, as it is supposed to be a general dictionary
and an internal part of the compression scheme. In this
work all learned dictionaries are intended to be general
for the large class of grayscale natural images which here
are represented by the training images in Fig. 1.

The advantage of step 2 above, compared with DCT
or wavelet decomposition with the same error (PSNR), is
that the representation is sparser. On the other hand, a
disadvantage is that the coefficient matrix (including the
zeros) is larger, and that the structure in the coefficients
is lost or hidden, i.e. the non-zero positions in W are or
seem to be almost random. JPEG, SPIHT and JPEG-
2000 exploit the structure in the quantized coefficients
in their advanced entropy coding schemes; especially the
EBCOT scheme in JPEG-2000 is advanced and effective.

4. EXPERIMENTS AND RESULTS

To prove learned dictionaries and sparse representations
to be interesting in compression we need to demonstrate
that what we gain on getting sparser representations is

Fig. 1. The training set consists of 8 images, each have
size 512× 512 pixels, 256 gray levels.

Fig. 2. A detail from the test image lena. Original to
the left, RLS-DLA (PSNR = 35.26) in the middle and
SPITH (PSNR = 34.78) to the right. 0.25 bits per pixel.
Some differences can be seen in the lower eyelash.

not all lost during coding. We will show that comparing
dictionary schemes with DCT and wavelet based schemes
using similar entropy coding, but exploiting the coeffi-
cient structures in the DCT and the wavelet cases, is
indeed in favor of the dictionary based schemes in the
wavelet domain. 6 dictionaries were learned from the set
of training images depicted in Fig. 1. This was done by
the three methods MOD, K-SVD and RLS-DLA, both
in the pixel domain and in the 9/7 wavelet domain. In
all cases the dictionary size is set to 64 × 440, includ-
ing the DC atom we get 441 atoms. The same size was
used in [5]. For MOD and K-SVD a fixed training set is
needed. We randomly pick 1500 patches from each of the
training images, giving L = 12000. For RLS-DLA a new
training vector is randomly selected in each iteration. In
learning, as well as later in compression, ORMP is used
for vector selection. The error limit ε is adjusted during
learning to match a target PSNR equal to 38 dB for the
training images. 1000 epochs, each processing L = 12000
training vectors, were done for MOD and K-SVD and 6
million iterations were done for RLS-DLA.

Compression results on two test images, lena and
boat, are shown in Tab. 1 and 2. Probably, the lena im-
age best fits the image class implicit given by the training
images, the boat image has more distinct lines than most
of the training images.

The proposed dictionary compression scheme is com-
pared with DCT and wavelet based schemes using simi-
lar entropy coding. The results labeled “DCT” and “9/7
wavelet” in Tab. 1 and 2 were achieved using the same re-
cursive Huffman coder [9], here the quantized coefficients



Table 1. Achieved PSNR on lena
bit rate 0.25 0.50 0.75 1.00 1.50

MOD (pix) 34.25 37.51 39.42 40.81 42.93
K-SVD (pix) 34.19 37.52 39.48 40.92 43.14
RLS (pix) 34.22 37.76 39.82 41.32 43.65

DCT 34.02 37.41 39.54 41.09 43.44

MOD (9/7) 35.12 38.21 39.98 41.28 43.34
K-SVD (9/7) 35.13 38.26 40.07 41.41 43.56
RLS (9/7) 35.26 38.57 40.42 41.78 44.02

9/7 wavelet 35.08 38.29 40.19 41.61 43.90

JPEG 31.64 35.85 37.77 39.14 41.16
SPIHT 34.78 38.11 40.12 41.40 43.26
JPEG-2000 35.29 38.60 40.48 41.91 44.13

Table 2. Achieved PSNR on boat.
bit rate 0.50 0.75 1.00 1.50 2.00

MOD (pix) 32.39 34.22 35.55 37.53 39.17
K-SVD (pix) 32.42 34.30 35.67 37.80 39.64
RLS (pix) 32.62 34.63 36.10 38.44 40.48

DCT 32.33 34.37 35.89 38.47 40.87

MOD (9/7) 32.84 34.60 35.88 37.83 39.50
K-SVD (9/7) 32.88 34.67 36.00 38.11 39.94
RLS (9/7) 33.11 35.03 36.42 38.73 40.75

9/7 wavelet 32.78 34.67 36.04 38.48 40.95

JPEG 30.90 32.99 34.46 36.44 38.05
SPIHT 32.63 34.68 35.96 38.35 40.42
JPEG-2000 33.32 35.27 36.74 39.20 42.01

were processed by both End-Of-Block coding and Run-
Length coding to exploit the structure. Though simple,
this scheme is quite effective. Matlab-files, more test
images and results are presented on the web page3. Fi-
nally, JPEG, JPEG-2000 and SPIHT compression were
done on the same images. The JPEG and JPEG-2000
implementation is the Matlab imwrite command. For
SPIHT (Set Partitioning in Hierarchical Trees) a public
Matlab implementation4 was used.

Dictionaries in the wavelet domain achieves about 0.5
dB better PSNR than dictionaries in the pixel domain,
slightly more evident at low bit rates. This is parallel
to the improvement going from DCT to 9/7 wavelet in
general. Going from JPEG to JPEG-2000 has in addi-
tion a significant contribution from the entropy coding.
Comparing the dictionaries from the different dictionary
learning algorithms the RLS-DLA dictionary performs
best in the pixel domain as well as in the wavelet do-
main for both test images. Thus the best dictionary
based result is from wavelet domain, RLS-DLA dictio-
nary. These results are comparable but slightly worse
than JPEG2000.

3http://www.ux.uis.no/~karlsk/ICTools/ictools.html
4http://www.cipr.rpi.edu/research/SPIHT/spiht3.html

5. CONCLUSION

The purpose of this work was to explore the compression
capability of sparse approximations with dictionaries
learned by RLS-DLA, both in the pixel domain and in
the 9/7 wavelet domain. The experiments have demon-
strated that the proposed compression scheme which
uses learned dictionaries, preferable learned with RLS-
DLA, performs quite well, just below the JPEG-2000
results, but better than “straight-forward” compression
of the 9/7 wavelet coefficients which in turn is better
than SPIHT. The ultimate goal is for the total scheme to
perform better than state-of-the-art (JPEG2000), and
future work includes improving the entropy coding part,
for example by looking for exploitable structure in the
coefficient position information.

6. REFERENCES

[1] Michael Elad, Sparse and Redundant Representations,
from Theory to Applications in Signal and Image Process-
ing, Springer, New York, USA, 2010.

[2] B. A. Olshausen and D. J. Field, “Sparse coding with
an overcomplete basis set: A strategy employed in V1,”
Vision Research, vol. 37, pp. 3311–3325, 1997.

[3] K. Skretting, K. Engan, J. H. Husøy, and S. O.
Aase, “Sparse representation of images using overlapping
frames,” in Proc. 12th Scandinavian Conference on Im-
age Analysis, SCIA 2001, Bergen, Norway, June 2001, pp.
613–620, available at http://www.ux.uis.no/~karlsk/.

[4] Joseph F. Murray and Kenneth Kreutz-Delgado, “Sparse
image coding using learned overcomplete dictionaries,” in
Proc. of the 14th IEEE Workshop on Machine Learning
for Signal Processing, Sao Luis, Brazil, Sept. 2004, pp.
579–588.

[5] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An al-
gorithm for designing overcomplete dictionaries for sparse
representation,” Signal Processing, IEEE Transactions
on, vol. 54, no. 11, pp. 4311–4322, 2006.

[6] Ori Bryt and Michael Elad, “Compression of facial im-
ages using the K-SVD algorithm,” J. Vis. Comun. Image
Represent., vol. 19, no. 4, pp. 270–282, 2008.

[7] K. Skretting and K. Engan, “Recursive least squares dic-
tionary learning algorithm,” IEEE Transactions on Sig-
nal Processing, vol. 58, pp. 2121–2130, Apr. 2010, Digital
object identifier: 10.1109/TSP.2010.2040671.

[8] K. Engan, K. Skretting, and J. H. Husøy, “A family
of iterative LS-based dictionary learning algorithms, ILS-
DLA, for sparse signal representation,” Digital Signal
Processing, vol. 17, pp. 32–49, Jan. 2007.

[9] K. Skretting, J. H. Husøy, and S. O. Aase, “Improved
Huffman coding using recursive splitting,” in NORSIG-
99, Asker, Norway, sep 1999, pp. 92–95, available at
http://www.ux.uis.no/~karlsk/.


