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ABSTRACT

The use offramesand matching pursuitsfor signal representa-
tion are receiving increased attention due to their potential in var-
ious signal processing applications. Good design algorithms for
block orientedframes have recently been published. Viewing these
block oriented frames as generalizations of block oriented trans-
forms, it was natural to seek corresponding generalizations of crit-
ically sampled filter banks leading tooverlapping frames. Here we
adapt these design methods to be used on two dimensional signals,
that is images, and develop a design scheme for block oriented and
overlapping frames suitable for images. Experiments show that
the designed frames achieve better results than standard orthogo-
nal decomposition methods when the goal is sparse representation
of images.

1. INTRODUCTION

Sparse image representations are useful in different applications.
In commonly used block oriented transforms, e.g. the Discrete
Cosine Transform (DCT), and the more recent wavelet based de-
composition methods, the sparseness is introduced through thresh-
olding of the transform or wavelet coefficients. Thus only a lim-
ited number of non-zero coefficients represent the image. This
introduces errors in the reconstructed image. The goal is to mini-
mize these errors while fulfilling a sparsity constraint making the
number of non-zero coefficients small compared to the number of
pixels in the original image. The non-zero coefficients as well as
their position information constitute a sparse representation of the
image, useful in many applications like compression, feature ex-
traction, modelling, and classification.

This has an analogy in the human visual system, where an
image is interpreted as many objects placed relative to each other.
This is a sparse representation of the image. We do not perceive
the millions of pixels that are received in the retina, but rather a
sparse image of some few constituent parts (objects) with different
shapes and textures.

Block oriented orthogonal transforms may be used to get a
sparse representation of a signal vector,xl. The forward trans-
form, which we for notational convenience denote byT−1 = TT ,
is used to compute the transform coefficient vector, denotedyl,
for each block by what is commonly called the analysis equation,
yl = T−1xl. The reconstructed signal vector is then given by the
corresponding synthesis equation, where tilde indicates possibly
approximated quantities:

x̃l = T ỹl =
NX

n=1

ỹl(n)tn. (1)

The synthesis vectors, denoted{tn}N
n=1, are the columns of the

matrix T. The approximated signal vector is built up as a linear

combination of these synthesis vectors. The{ỹl(n)}n are thresh-
olded versions of the coefficients, giving a sparse representation.

An overcomplete set of N-dimensional vectors, spanning the
space,{fk}K

k=1 whereK ≥ N , is aframe. Interpreting these vec-
tors as columns of anN × K matrix F we have a more general
situation than that of Equation 1. If we use a frame instead of an
orthogonal transform, the coefficients can not be computed using
the traditional analysis equation. Practical solutions employvector
selectionalgorithms such as Matching Pursuit (MP) [1], Orthog-
onal Matching Pursuit (OMP) [2], and Fast Orthogonal Matching
Pursuit (FOMP) [3].

While the use of frames on images has been reported by sev-
eral authors, the development of procedures for their design is
still in its infancy. In fact most authors use ad-hoc frame designs,
[4, 5, 6, 7, 8]. Some attempts at the design of optimal block ori-
ented frames, given a sparseness constraint, are given in [9].

The first attempt at designing frames where the frame vec-
tors are allowed to overlap, referred to asoverlapping frames, is
reported in [10]. While producing good results, this method for
designing overlapping frames is both computationally and concep-
tually more demanding than block oriented frame design. In [11]
a method for designing overlapping frames that is as simple as the
design procedure for block oriented frames was proposed. Note
that these methods for design of overlapping frames have previ-
ously only been used on one dimensional signals. In this paper
we adapt the method of [11] to be used also on images. We de-
scribe how the one dimensional frame design methods may be ex-
tended to the two dimensional case, both in the block oriented and
the overlapping case. Subsequently, we describe some practical
improvements or adjustments that we suggest for the two dimen-
sional case. This is followed by some examples, a comparison to
orthogonal decomposition methods, and a brief discussion.

2. FRAME DESIGN

The task is to design a frame,F, of sizeN ×K, K ≥ N , adapted
to a class of signals, represented by a large set of training vectors,
{xl}L

l=1. The expansion corresponding to Equation 1 is

x̃l = Fwl =
KX

k=1

wl(k)fk, (2)

where we have replaced the transform coefficients by weights, de-
notedwl. For frame design it is convenient to collect the vectors,
{xl}, {x̃l}, and{wl}, into matrices,X, X̃, andW. The size of
the matrices will beN ×L, N ×L, andK ×L respectively. The
synthesis equation may now be written

X̃ = FW. (3)



The sparsity of the representation is expressed by thesparse-
ness factor

S =
number of non-zero coefficients inW

number of samples inX
. (4)

We point out that this is a global definition; for each column ofX̃
a larger or a smaller number of vectors than the average,SN , may
be selected. The use of a global sparseness constraint makes the
vector selection procedure more computational demanding, but the
benefit is that we get a better global approximation quality com-
pared to the situation where we select the same number of vectors,
SN , for each column of̃X.

2.1. General design method

The optimal frame will depend on the target sparseness factor and
the class of signals we want to represent. The problem of find-
ing the optimal frame,F, for a given class of signals and a given
sparseness factor, was treated in [12] and can briefly be summa-
rized as follows: We want to find the frame,F, and the sparse
weights,W, that minimize the sum of the squared errors. The
object function, which we want to minimize, is

J = J(F,W) = ‖X− X̃‖2 = ‖X− FW‖2. (5)

The norm used is‖A‖2 = trace(AT A). This norm is used both
for matrices and vectors, for vectors it corresponds to the 2-norm.
To find the optimal solution to this problem is difficult if not im-
possible. We split the problem into two parts to make it easier to
solve (that is find a resonably good solution) by using an iterative
algorithm.

The algorithm starts with a user supplied initial frameF(0)

and then improves it by iteratively repeating two main steps:

1. W(i) is found by vector selection using frameF(i),
where the object function isJ(W) = ‖X− F(i)W‖2.

2. F(i+1) is found fromX andW(i),
where the object function isJ(F) = ‖X− FW(i)‖2.
Then we incrementi and go to step 1.

i is the iteration number. The first step is sub-optimal due to the
use of practival vector selection algorithms, while the second step
finds theF that minimizes the object function. More details on
this algorithm can be found in [12].

2.2. Block oriented frame images

The frame design method in Section 2.1 is independent of what the
signal vectors and their sparse approximations,xl andx̃l, actually
represent. The method is easily adapted to images. The train-
ing images are divided into non-overlapping blocks; we have used
blocks of size8 × 8. Traditional orthogonal transforms, such as
the DCT, are separable. The separability property puts restrictions
on the 2D transform. Training a frame to be separable is probably
hard, and since it also would limit the flexibility of the frame, we
do the frame based image approximation in a non-separable man-
ner. This means that the8× 8 = 64 pixels from each image block
are reordered, by lexicographically ordering of the columns of the
image block, into a64× 1 vector,xl.

Since a reconstructed vector,x̃l, is built up as a linear com-
bination of a few of the frame vectors,{fk}K

k=1, a reconstructed
image block is built up as a linear combination of a few of the

Fig. 1. The training set consists of 8 images, each have size512×
512 pixels, 256 gray levels.

frame images. A frame image is the image corresponding to a
frame vector. Note that the frame images are block oriented, they
do not overlap with adjacent blocks.

The operator that splits an image into blocks and order each
block as a column vector is denotedR. This operator conserves
the (trace) norm,‖RA‖ = ‖A‖. We useA for general matrices
andB for matrices that represent images. For the eighth (M = 8)
training images in Figure 1, denoted{Bm}M

m=1, X is formed as

X = [X1|X2| · · · |XM ], where

Xm = RBm, m = 1, 2, . . . , M. (6)

The size ofXm is 64×Lm, whereLm is number of pixels inBm

divided by64. An approximation toX is made as in Equation 3,
for each traing image individually as̃Xm = FWm. A recon-
structed image is̃Bm = R−1X̃m. As we want to use the same
sparseness factors for each image, we have for each image

S =
number of non-zero coefficients inWm

number of pixels inBm
. (7)

Frame design can now be done by the method described in Sec-
tion 2.1.

2.3. Overlapping frames

The essence of [11], which is currently in the review phase, is as
follows: For a one dimensional signal and the block oriented case
the synthesis equation for several adjacent blocks can be written as
x̃ = F w or

26666664
...
x̃l

x̃l+1

x̃l+2
...

37777775 =

26666664
. . .

F
F

F
. . .

37777775
26666664

...
wl

wl+1

wl+2
...

37777775 . (8)

When we extend this to the general overlapping case, the large
frame,F , can be written as



F =

266666666664

. . . F1

. . .
... F1

. . . FP
... F1

. . .

FP
...

. . .

FP
. . .

377777777775
, F =

264 F1

...
FP

375 .

(9)

The synthesis vectors are the columns ofF orF. F (of sizeNP×
K) can be partioned intoP submatrices,{Fp}P

p=1 each of size
N ×K.

F is now set to be the product of two matrices,F = GH, that
is2666664
·
·

F
F

·
·

3777775=

2666664
·
·

G
G

·
·

3777775
264 ·

H
H

·

375
(10)

with G as in Equation 9 (but withG of sizeNP ×N ) andH as in
Equation 8 (H of sizeN ×K). The structure of the first matrix,
G, corresponds to the synthesis matrix of a critically sampled FIR
synthesis filter bank, Equation 2.47 in [13]. The constituent matri-
ces ofF , theF matrices, are each of sizeNP × K and defined
by

F = GH =

264 G1

...
GP

375H =

264 G1H
...

GP H

375 . (11)

The signal representation is now̃x = F w = GHw. The object
function for the one dimensional signal isJ = ‖x− x̃‖2.

The task of designingF can now be divided into two parts:
selecting a reasonableG, which we then keep fixed, and finding an
H (or equivalently its constituent matricesH) using the method
described in Section 2.1. By fixingG a restriction is put onF ,
the synthesis vectors ofF may not be freely selected vectors from
RPN , but are restricted to be in theN dimensional subspace of
RPN spanned by theN columns ofG. The object function will
now beJ = J(H) = ‖x− GHw‖.

Suppose that the columns ofG’s constituent matrices,G, are
chosen as the synthesis vectors (filter responses) of anorthogonal
perfect reconstruction filter bank, thenG−1 = GT and the norm is
conserved,‖x‖ = ‖Gx‖ = ‖G−1x‖. This implies that
J = ‖x− GHw‖ = ‖G−1(x− GHw)‖ = ‖GT x−Hw‖,
and we can designH in exactly the same manner as we design
block frame. The only difference is that we use(GT x) rather than
x as the training signal.That is, we do the approximation in the
coefficient domain rather than in the signal domain.

2.4. Overlapping frame images

In many applications, for example signal compression, feature ex-
traction and noise suppression, it has been demonstrated that fil-
ter banks and wavelets perform better than transforms. This is the
motivation for developing a synthesis system that uses overlapping
frame images. The hypothesis is that the overlapping frame images
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Fig. 2. Some of the64 basis images from the DCT, the LOT and
the ELT. The boxes frame the8 × 8 central block of each of the
basis images.

will better approximate a target image than a block oriented frame
when the sparseness of the expansion is fixed.

We will now extend the method in Section 2.3 to the two di-
mensional case, an overlappping frame vector will now be an over-
lapping frame image. The concept of overlapping frame images
may be illustrated usingbasis images.

It is well known that the two dimensional8 × 8 DCT repre-
sents each original8×8 image block as a sum of64 basis images.
Some of these basis images are shown in the upper left part of Fig-
ure 2. When the decomposition of the image is done by a (usually
separable and orthogonal) filter bank the basis images will overlap
each other. In Figure 2 we show some of the overlapping basis im-
ages of the two dimensional Lapped Orthogonal Transform (LOT)
[14] and the two dimensional Extendend Lapped Transform (ELT)
[15].

The block oriented frame (for the two dimensional case) can
be considered as a generalization of the block oriented transform.
We use more frame images than the (orthogonal) basis images.
Similarly, the overlapping frame (for the two dimensional case)
can be considered as a generalization of the critically sampled
(usually but not necessarily separable and orthogonal) filter bank.
We use more overlapping frame images than in the critically sam-
pled filter bank case.

The question is now: How do we go on and design such over-
lapping frame images? The general method for one dimensional
signals proposed in [10] is difficult to extend to the two dimen-
sional case. The method proposed in [11] on the other hand is
easy to extend to the two dimensional case. This is so because the
method puts some restrictions on the frame images. Each frame
image should be a linear sum of basis images of an orthogonal
(separable) filter bank. This makes it possible to do the approxi-
mation in the coefficient domain rather than in the signal domain.

We defineT as a linear operator that operates on two dimen-
sional matrices (or images). LettingT be separable, it can be split
into a vertical operator, working on the columns of the matrix, and
a horizontal operator, working on the rows of the matrix. These
operators may be represented by matricesTv andTh respectively
such that



TA = TvATT
h . (12)

Tv andTh are selected to be matrix representations of orthogonal
critically sampled filter banks, they have the same structure asG
in Equation 10.T is now a separable and unitary operator and it
conserves the (trace) norm,‖TA‖ = ‖A‖. The important point
is thatT , and the reorder operatorR defined in Section 2.2, are
operators that conserve the (trace) norm.

The extension from the one dimesional case to the two dimen-
sional case can be done by transferring the image into the coef-
ficient domain, where we denote itY = TB. The image in the
coefficient domain,Y, has the same size as the image itself,B.
Another important fact is thatY may be divided into (for the ex-
periments here8 × 8) blocks in a sensible way, by grouping the
coefficients for the different basis images together.

As for the one dimensional case the approximation is done in
the coefficient domain rather than in the signal domain. To achieve
this, X is defined differently than for the block oriented case in
Equation 6:

X = [X1|X2| · · · |XM ], where

Xm = R(Ym) = R(TBm), m = 1, 2, . . . , M. (13)

The design method of Section 2.1 may now be used as before.
The frameF is now used to represent blocks of the image in the
coefficient domain, and not as for the block oriented case, blocks
of the image itself. This makes it easy to design a frame where the
frame imagesoverlap, since each frame image now will be a linear
combination of the overlapping basis images of the filter bankT .

An approximation toX is made as in Equation 3, and the re-
constructed image is given as:

B̃m = T−1 Ỹm = T−1 R−1 X̃m = T−1 R−1 FWm, (14)

whereWm, as before, is the weight matrix calculated by a vector
selection algorithm. Using the same notation as in Equation 14 the
basis images ofT may be written as{T−1 R−1 en}64n=1 where
en is a unit vector (size64 × 1) with a 1 in positionn and zeros
elsewhere. Some basis images are shown in Figure 2. The frame
images will now be a linear combination of such basis images.
A frame image may be written as(T−1 R−1 fk). Some of these
frame images are shown in Figure 3, in the left part for the initial
frame in the right part and for the optimized frame.

Investigating the object function from Equation 5, we have

J = ‖X− X̃‖2 =
MX

m=1

‖Xm − X̃m‖2

=
MX

m=1

‖T−1R−1(Xm − FWm)‖2

=
MX

m=1

‖Bm − B̃m‖2. (15)

J is minimized in the design algorithm, i.e. we minimize the sum
of the squared norms of the residual images. Peak Signal to Noise
Ratio (PSNR) is defined using this measure

PSNR= 10 log10
2552 · (number of pixels)

‖B− B̃‖2
. (16)

3. PRACTICAL ADAPTIONS

In the previous section we described the most important modifi-
cation to the frame design methods presented earlier which were
needed when going from the one dimensional case to the two di-
mensional case and from the block oriented case to the overlapping
case. Here we describe some minor modifications giving some im-
provements in the results. The impatient reader may jump directly
to the experimental part without missing the essential ideas.

3.1. Subtracting the low pass image

Several observations motivate subtracting the low pass image from
the original image. Vector selection schemes have been shown ex-
perimentally to work well when the signal has zero mean, [9]. Due
to the large variation in the mean in different parts of an image, it
is more advantageous to subtract a locally varying mean than a
global mean. Similarly, in DCT based coding schemes (JPEG) the
DC components of each image block are handled separately.

We have chosen an approach using a separable biorthogonal
low-pass filter, in each dimension downsampled by a factor of16,
to get a low pass version of the image. To get the detailed image
we take the original image and subtract the reconstructed low pass
image. This is illustrated in Figure 4. For a512 × 512 image
the low pass image may be stored (without further compression)
in 1024 bytes, that is a bit rate of0.03 bits per pixel. For the
test images, Lena and Barbara in Figure 5, PSNR for the low pass
images are23.66 and19.89 respectively. Since we have already
used one coefficient value per16 × 16 block, we should use a
sparsness factor ofS = St− 1

256 in vector selection on the detailed
image, whereSt is the actual (total) target sparseness factor.

3.2. Global Matching Pursuit

Images are largely non-stationary and we should select more vec-
tors to represent parts with many details than relative flat parts.
Prior to vector selection the image is represented as a matrix,Xm

of size64×Lm. Xm is formed as in Equation 6 for the block ori-
ented case or as in Equation 13, in the coefficient domain, for the
overlapping case. In both cases the problem is to find the most ap-
propriate number of frame vectors,{S′(l)}Lm

l=1, to use for approx-
imating each column ofXm, under the constraint,

PLm
l=1 S′(l) =

SNLm.
Matching Pursuit (MP), as presented in [1], approximate each

signal vector (column ofXm) independently of other signal vec-
tors, using vectors from a frame. The frame vectors are selected,
one at the time, until some stop criterion is met. The stop criterion
could be that a predefined number of frame vectors are selected
or that an acceptable small value on the residual is achieved (used
in [9]). This does not give precise control of the total number of
selected vectors in the entire image.

To solve this a variant of MP, Global Matching Pursuit (GMP),
was made. The inputs are the matrixX, the frameF and the
sparseness factor (0 < S < 1). For notational convenience we
have dropped the indexm. The output is the weight matrix,W,
selected so that the sparseness constraint is fulfilled, that is the
number of non-zero elements inW is SNL, and at the same time
the error‖X − FW‖ is as small as possible. The distribution
vectorS′(l) is given as the number of non-zero elements in each
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column ofW. The algorithm for doing global vector selection is
as follows:

1. Set the weight matrix to zero,W = 0. Find all the inner
products,Q = FT X. The size ofQ is K × L, Q(k, l) is
the inner product of frame vectork and columnl in X.

2. Find the largest (in absolute value)SL inner product ofQ
but not more than one from each column. This gives a set
of SL indices, simply denoted(k, l).

3. For each of theSL different pair of indices(k, l), use the
frame vector given byk to approximate columnl of X:

(a) Update the weight,
W (k, l) = W (k, l) + Q(k, l).

(b) Update columnnl of X,
X(:, l) = X(:, l)−Q(k, l) · F (:, k)

(c) Update the inner products for vectorl of X,
Q(:, l) = FT ·X(:, l)

(d) Stop if we have selected enough weights.

4. If more frame vectors need to be selected goto 2.

The modification compared with ordinary MP can be seen in
step 2. Ordinary MP would select theL largest inner products, one
for each column ofQ. By reducing the number of selected inner
products we make sure that the loop in step 3 runs at leastN times,
making it possible to select many frame vectors for those vectors
(columns) ofX that require so.

By usingS′(l), found fromW returned by GMP, as the num-
ber of frame vectors to use for each vector in matrixX in the
FOMP algorithm [3] we can reduce the error even more. This
is because FOMP often finds better coefficients than MP. Thus the
best global vector selection algorithm we have found is the com-
bination GMP+FOMP. Note that we use GMP on each image by
itself, not globally on all the images.

GMP+FOMP is computationally demanding using approxi-
mately 5 times more time than FOMP only, when implemented
in Matlab. FOMP needS′(l) as an extra input, so FOMP alone is
only an alternative if we already have found the distribution.

Experiments have confirmed that the frame design method per-
forms better when the proposed modifications are used.

4. DESIGN EXAMPLES AND DISCUSSION

The described method is used to design frames for representing
images. The overlap factor for the frame images will be decided
by the choice ofT . Three differentTs are used: the identity trans-
form, corresponding to the pure block oriented case, the 8 channel,
16 taps LOT, and the 8 channel, 32 taps ELT. The size of the frame
F in all the experiments is64 × 128. As initial frame we chose
values such that the first 64 frame images are the basis images of
the DCT (whenT is identity), or the basis images of the LOT or
the ELT. Some of these basis images are shown in Figure 2. The
rest of the frame images are random low pass images. Some of the
initial frame images are shown in the left part of Figure 3.

The images in Figure 1 are used as training data. They are
preprocessed by the low pass filtering described in Section 3.1,
and the detail images are used for the rest of the process. Each
detail image is transformed into a matrix of training vectors, as
in Equation 6 for the block oriented case (T is identity) and as in
Equation 13 for the overlapping cases (T is LOT and ELT), each
case giving one set of training data. Frames are trained for seven
different target sparsness factors, belonging to the set
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St ∈ { 2
256 , 4

256 , 8
256 , 12

256 , 16
256 , 24

256 , 32
256}. Since the low pass im-

age has used1
256 of the sparsness factor, the sparseness factor

used as constraint in Global Matching Pursuit (GMP) will beS =
St − 1

256 . 21 frames were designed in the experiments.
The frames have been optimized to represent images in a sparse

manner, and the frames’ capability of sparse representation of an
image is examined. One application of sparse representations is
compression, but it is not the only one. We focus on the repre-
sentation capabilities of the frames in these experiments, conse-
quently we do not include quantization or coding of the non-zero
coefficients.

We use two test images, shown in Figure 5. An experiment
was done on the test image Lena, measuring the quantitative qual-
ity in terms of PSNR. For each of the 21 optimized frames, the im-
age was represented using the same sparseness factor as the frame
was designed for. Figure 6 shows these calculated PSNR values
as solid lines, one line for each of the different types of transform
T . We see that the overlapping frames do more than0.5 dB bet-



ter than block oriented frame, when the sparseness factor is small.
For larger sparseness factors the difference is smaller. The frame
which use aT based on ELT do marginally better than the frame
which use aT based on LOT. For the sake of comparison we also
tested sparse representation using the DCT (8× 8 blocks) and the
(8 channel) filter banks that use LOT and ELT. We keep only the
SNL, the sparseness factor multiplied by the number of pixels,
largest coefficients, setting the rest to zero. The results are shown
in Figure 6 as dotted lines. The filter banks perform considerable
better than the DCT, and the frames performs significantly better
than the orthogonal filters (DCT, LOT and ELT).

The same sparse represetation test was done on the test image
Barbara, the results are shown in Figure 7. Also on this image
the filter banks and the overlapping frames perform considerably
better than the DCT and the block oriented frame. But the opti-
mized frames perform worse than the orthogonal filter banks. This
is probably because the Barabara image is quite different from the
training images, Barbara include more of high frequency compo-
nents. The high frequency basis images are to a large degree re-
moved from the frame images during training. This is clearly illus-
trated when we see what happens with the high frequency frame
image numbered 54 in Figure 3, the left part is initial frame images
and the right part is the frame images after training. The test im-
age Lena is more similar to the training images than the test image
Barabara.

Some qualitative tests are done using both Lena and Brabara
as test images. To get noticeable differences and artifacts, a sparse-
ness factor as low asS = 4

256 was used. We focus on a small detail
of the reconstruced images, and show this for both the traditional
methods and the designed frames. The result for the detail of Lena
is shown in Figure 8, and for Barbara in Figure 9.

On Lena we clearly see the results of higher PSNR for the
frames, the quality is overall better. We notice that the blockiness
is considerable reduced on the block oriented frame compared to
the DCT case, but it is still present. The LOT and ELT cases are
not blocky, but we notice some ringing (along the edge of the hat
below the eye, and above the eyebrow) and some smearing of de-
tails (the spot on the hat above the eye). The best visual quality is
provided by the frame based on the ELT, and this is also the one
with the best PSNR.

On Barbara the PSNR’s are lower than on Lena and the quality
of all the reconstructed images are worse. None of them are able
to show the shawl at this low sparseness factor. The blockiness
of the block oriented frame is here easily seen, but it performs
much better than the DCT based reconstruction. The ringing in
the LOT and ELT bases reconstructions is most visible in the chin
where the stripes of the shawl appear. Note that even though the
reconstruction based on the largest ELT coefficients performs best
in terms of PSNR, the reconstruction using the ELT based frame
is the one that represent the face best (less smearing and the tip of
the nose and the eyes are better visualized). This may be because
Barbara’s face is more within the class of images in the training
set than the rest of the Barabara image.

5. CONCLUSION

Overlapping frames for images used with a sparsity constraint per-
forms well, both in quantitative and qualitative measures. Frames
do better than transforms, which is very much as expected since
the frame is overcomplete. Also overlapping frames do better than
block oriented frames, however the improvement is not as large
as when we compare filter banks (LOT and ELT) to a transform
(DCT).
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Fig. 8. Qualitative results on Lena. To the left we have the results using the largest coefficient from orthogonal transforms and filter banks,
DCT, LOT and ELT. To the right we have the results when we have used frames for sparse representation. The sparseness factor isS = 1

64
for all images. The PSNR, as plotted in Figure 6, are for the orthogonal cases 29.33 (DCT), 29.93 (LOT), 30.38 (ELT) and for the frames
based on these 31.49, 31.78 and 32.02.
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LOT based frame Block oriented frame

Fig. 9. Like Lena in Figure 8 but here a detail of Barbara. The PSNR, as plotted in Figure 7, are for the orthogonal cases 23.90 (DCT),
24.76 (LOT), 25.30 (ELT) and for the frames based on these 24.57, 24.98 and 25.16.


