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ABSTRACT

The use offramesandmatching pursuitsfor signal representation
are receiving increased attention due to their perceived potential
in various signal processing applications. Good design algorithms
for block orientedframes have recently been published. Viewing
these block oriented frames as generalizations of block oriented
transforms, it is natural to seek corresponding generalizations of
critically sampled filter banks leading tooverlapping frames. Here
we show that a large class of overlapping frames can be decom-
posed into a critically sampled orthogonal filter bank, – that can be
chosen prior to the design, and a block oriented frame. Based on
this we show that excellently performing overlapping frames can
be designed using the already established and simple theory for the
design of block oriented frames.

1. INTRODUCTION

Block oriented transforms are widely used in signal processing.
A signal, x, is divided intoL blocks of lengthN , where each
block is represented by a column vector denoted byxl. The for-
ward transform, which we for notational convenience denote by
T−1, is used to compute the transform coefficients, denotedyl,
for each block through what is commonly called the analysis equa-
tion, yl = T−1xl. The reconstructed signal vector is then given
by the corresponding synthesis equation, where the tilde is used to
indicate the possibility of approximated quantities,

x̃l = T ỹl =
NX

n=1

ỹl(n)tn. (1)

The synthesis vectors, denoted{tn}N
n=1, are the columns of

the matrixT. In the case of common transforms, such as the
Discrete Cosine Transform (DCT) and the Karhunen-Loeve Trans-
form (KLT), these synthesis vectors form an orthogonal basis for
RN . The reconstructed signal is built up as a linear combination
of these synthesis vectors. Allowing for the possibility of having
more thanN terms in the linear combination of Equation 1, say
K terms, the collection ofK vectors will be denoted as{fk}K

k=1.
Interpreting these vectors, collectively referred to as aframe, as
columns of anN ×K matrixF we have a more general situation
than that of Equation 1.

In many signal processing applications approximating (or rep-
resenting) a signal vector through a linear combination ofa small
number ofvectors selected from a predefined set of vectors is im-
portant, for example in compression, feature extraction and model-
ing. These are referred to as sparse representations, and the sparse-

ness factor is defined by the ratio of the number of vectors used in
a given expansion to the number of signal samples in the origi-
nal vector. If the vector set forms an orthogonal basis the synthe-
sis coefficients,{ỹl(n)}, are computed using the analysis equa-
tion, whereas if the vector set is a frame, practical solutions em-
ploy vector selectionalgorithms such as Matching Pursuit (MP)
[1], Orthogonal Matching Pursuit (OMP) [2], and Fast Orthogonal
Matching Pursuit (FOMP) [3]. Even though the use of frames has
been reported by several authors, the development of procedures
for their design is still in its infancy. In fact most authors use ad-
hoc frame designs. Early attempts at design of optimal frames,
given a sparseness constraint, are given in [4, 5]. Note that so far
we have talked only aboutblock orientedsparse representations.

The first attempt at designing frames where the frame vec-
tors are allowed to overlap, referred to asoverlapping frames, is
reported in [6]. While producing good results, this method for de-
signing overlapping frames is both computationally and conceptu-
ally more demanding than block oriented frame design. Here we
propose a simple and elegant strategy for designing overlapping
frames while keeping the attractive conceptual and computational
aspects of the design procedure for block oriented frames. This
is obtained at no cost in performance. In this paper we present
some necessary background on frame design before we focus on
the new design algorithm. This is followed by some examples and
a discussion.

2. FRAME DESIGN

If we use a frame,F, of sizeN ×K, K ≥ N , instead of a trans-
form of sizeN × N , the expansion corresponding to Equation 1
would be

x̃l = Fwl =
KX

k=1

wl(k)fk, (2)

where we have replaced the transform coefficients by weights, de-
notedwl. The synthesis equation for several adjacent blocks can
be written as̃x = F w or26666664

...
x̃l

x̃l+1

x̃l+2
...

37777775 =

26666664
. . .

F
F

F
. . .

37777775
26666664

...
wl

wl+1

wl+2
...

37777775 . (3)

The block diagonal structure of the large frame,F , is evident from
Equation 3, values outside the boxes are zero.
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Fig. 1. The support structure of 4 different synthesis matricesF .
Each column of dots represent one synthesis vector.

The sparsity of the representation is expressed by thesparse-
ness factor

S =
number of non-zero coefficients inw

number of samples inx
. (4)

We point out that this is a global definition; for each block a larger
or a smaller number of vectors than the average,SN , may be se-
lected. The use of a global sparseness constraint makes the vec-
tor selection procedure more computationally demanding, but the
benefit is that we get a better global approximation quality.

2.1. Block oriented frames

The optimal frame will depend on the target sparseness factor and
the class of signals we want to represent. The problem of find-
ing the optimal frame,F, for a given class of signals and a given
sparseness factor, represented by a training signal,x, was treated
in [5] and can briefly be summarized as follows: The training
vectors,{xl}, are collected as columns into a matrixX, and the
weights,{wl}, into a matrixW in the same manner. The algo-
rithm starts with a user supplied initial frameF(0) and then im-
proves it by iteratively repeating two main steps:

1. W(m) is found by vector selection using frameF(m),

2. F(m+1) is found fromX andW(m).

m is the iteration number. The second step is optimal in the sense
that it finds theF that minimizes the object function

J = J(F) = ‖x− x̃‖2 = ‖x−Fw‖2 (5)

whenW is given. The norm used is‖A‖2 = trace(AT A). More
details on this algorithm can be found in [5].

2.2. Overlapping frames

In many applications, for example signal compression, feature ex-
traction and noise suppression, it has been demonstrated that fil-
ter banks and wavelets perform better than transforms. This is
the motivation for trying a synthesis system that uses overlapping
vectors. The hypothesis is that the overlapping frame will better
approximate a target vector than a block oriented frame when the
sparseness of the expansion is fixed.

To obtain overlapping synthesis vectors the block diagonal
structure ofF in Equation 3 should be replaced by a band diagonal
structure as in Equation 6.

F =

266666666664

. . . F1

. . .
... F1

. . . FP
... F1

. . .

FP

...
. . .

FP
. . .

377777777775
, F =

264 F1

...
FP

375 .

(6)

The synthesis vectors are the columns ofF or F. F can be par-
tioned intoP submatrices,{Fp}P

p=1 each of sizeN × K. P is
the overlap factor. The two rightmost portions of Figure 1 show
the support structure of the synthesis matrix,F , corresponding to
a (critically sampled) uniform FIR filter bank / Lapped Orthogonal
Transform (LOT) and a (critically sampled) wavelet type synthe-
sis filter bank. The design problem for this situation, leading to a
computationally and conceptually demanding algorithm, has been
treated in [6].

In the next section we show that overlapping frames can be de-
signed using the design theory developed for block oriented frames.
The proposed method shows excellent results in spite of greatly
simplified design and use. This method is inspired by the method
used by Malvar & Staelin to design a signal adapted LOT [7].

3. THE PROPOSED METHOD

In arriving at the proposed method we posed the following ques-
tion: Given a desired overlapping frame structure as shown in
Equation 6, is it possible to decompose it into the product of one
structure as in Equation 3 (block oriented frame) and another ma-
trix? If so, could this other matrix be fixed, predefined prior to
the design process, while the design effort is spent on the block
structured part of the decomposition?

It is easily verified that settingF = GH, that is2666664
·
·

F
F

·
·

3777775=

2666664
·
·

G
G

·
·

3777775
264 ·

H
H

·

375
(7)

with G as in Equation 6 (but withG of sizeNP × N ) andH as
in Equation 3 (H of sizeN ×K) gives the overlapping frameF
with the desired structure. Note that the structure of the first ma-
trix, G, corresponds to the synthesis matrix of a critically sampled
FIR synthesis filter bank. The constituent matrices ofF , theF
matrices, are each of sizeNP ×K and defined by

F = GH =

264 G1

...
GP

375H =

264 G1H
...

GP H

375 . (8)

The signal representation is now̃x = F w = GHw.
For a given class of signals, specified by a large vectorx con-

taining an appropriate training set of signal segments, the task of
designingF can be divided into two parts: selecting a reasonable



G, size 32x16, the LOT synthesis vectors

H, size 16x32, the frame vectors

F=GH, size 32x32, the resulting synthesis vectors

Fig. 2. The synthesis matrixF is made up by the matrix product
of G andH. We notice that each column ofF is a linear com-
bination of the columns ofG, the coefficients are given by the
corresponding column ofH.

G, which we then keep fixed, and finding aH (or equivalently its
constituent matricesH) using the method of Section 2.1. The ob-
ject function for the second step in Section 2.1, Equation 5, will
now beJ = J(H) = ‖x− GHw‖.

Suppose that the columns ofG’s constituent matrices,G, are
chosen as the synthesis vectors (filter responses) of anorthogonal
perfect reconstruction filter bank, thenG−1 = GT and the norm is
conserved,‖x‖ = ‖Gx‖ = ‖G−1x‖. This implies that
J = ‖x− GHw‖ = ‖G−1(x− GHw)‖ = ‖GT x−Hw‖,
and we can designH in exactly the same manner as we design
block oriented expansions in [5]. The only difference is that we
use(GT x) rather thanx as the training signal. That is, we do the
approximation in the coefficient domain rather than in the signal
domain. In Figure 2 we illustrate the results of this process when
G was selected as the synthesis vectors of a32 tap 16 channel
LOT taken from [7].

In practical use the most important improvement of this method
compared with the method of [6], is when using the vector selec-
tion algorithm in the first step of Section 2.1. Vector selection
algorithms are block oriented, and the complexity increases dra-
matically as the block size increases. In [6] we had to adapt the
vector selection algorithm to the overlapping frame by using larger
blocks. With the proposed method, we may use any block oriented
vector selection algorithm directly, here we used FOMP [3]. The
synthesis vectors (i.e. the columns) of the submatrices ofF , (F),
are still orthogonal to each other (as they are inG). This is what
makes it possible to use block wise vector selection algorithms.

The total synthesis system, specified byF = GH, has one
fixed part and one part with free variables. In Figure 2,F has a
total of1024 parameters, but only the512 in H are free variables.
We may ask if this reduction in degrees of freedom is important. To
answer this we compared the synthesis system designed using the
proposed method, with a similar32×32 overlapping frame having
all variables free, designed using the method in [6]. We found that
the overlapping frame designed with the present method performs
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Fig. 3. Approximation quality, measured by Signal to Noise Ratio
(SNR), plotted as a function of sparseness factor. Here we compare
the results on an AR(1) signal for a block oriented frame (likeH in
Figure 2) designed with the method of Engan [5], (×), the results
of an overlapping frame (likeF in Figure 2) designed with the
method of Aase et al. [6] (�), and with the proposed method (◦).

best, see Figure 3. This illustrates that what we loose in degrees
of freedom, for the tested case at least, is more than compensated
for by what we win in the vector selection step. This indicate that
just having more free variables in an optimization problem does
not necessarily give a better solution if the optimization algorithm
can not handle the increase of free variables in a good way.

We should also point out that the synthesis vectors we design
are tied to the choice of orthogonal filter bank,G. The columns
of F, the synthesis vectors of lengthPN , will be in the N di-
mensional subspace ofRPN spanned by theN columns ofG. To
summarize: the main idea of this design method is that we may de-
sign an overlapping frame by selecting an appropriate orthogonal
filter bank,G, and design the frameH using established design
procedures for block oriented frames.

4. DESIGN EXAMPLES AND DISCUSSION

The framework presented can be used to design many different
synthesis systems,F = GH. The structure will be decided by the
choice ofG (G) and the size(N × K) of H, whereN depends
on G but K may be selected freely. Given the structure, and the
target sparseness factor, the values ofH will be adjusted iteratively
during the design. Since the design process converges towards a
local optimum (if it converges at all), the values will depend on
the initial frame,F(0) or more preciselyH(0). We have chosen to
present designs of32 frames: 2 signal sources× 4 differentGs×
4 sparseness factors.

We used two different signal sources for training: a Gaus-
sian AR(1) signal withρ = 0.95 and an electrocardiogram (ECG)
signal from the MIT arrhythmia database [8]: the MIT100 signal
starting from the first sample. When we tested the designed filter
banks in sparse representation experiments we used another AR(1)
signal also withρ = 0.95 and the MIT100 signal starting at sam-
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Fig. 4. Approximation quality, measured by SNR, plotted as a
function of sparseness factor. Here we have the AR(1) signal. The
solid lines are for the designed synthesis systems, usingG as LOT
(◦), ELT (O) and wavelet (�), and the block oriented frame (×).
The dotted lines are when we just keep the largest coefficients of
traditional (orthogonal) decomposition methods, DCT (×), LOT
(◦), ELT (O) and wavelet (�).

ple 130000, that is, we did not test on the same signals as in the
design phase. In both cases we used102400 signal samples in
training and testing.

The orthogonal filter banks we used, i.e. theGs, were the
16 channel,32 tap LOT [7], the16 channel,64 tap Extended
Lapped Transform (ELT) [9], and a 4 level dyadic filter bank using
the Daubechies wavelet filters of length12, (Matlab,db6 in wfil-
ters.m). For the sake of comparison we also designed block ori-
ented frames using the method presented in [5], having the fourth
G as the identity matrix. The designed frame,H, was of size
16 × 32, thus overcomplete by a factor of 2. During design we
used four different target sparseness factors.

Testing was done by representing the test signals using the
designed frames and some few sparseness factors. In Figure 4 we
have plotted the results for the AR(1) signal. Comparing the solid
lines with the dotted lines we see the improvement we get by using
a frame to make the sparse representation rather than just keep
the largest coefficients after an orthogonal transform or filter bank.
The improvement is approximately 2 dB. Comparing the marks (◦,
O and�) to the mark (×) we see the improvement we get when
we use overlapping synthesis vectors rather than block oriented
synthesis vectors. We see that the ELT and wavelet, which have the
largest overlap factors, do marginally better than the LOT, but they
all do better than the DCT. Figure 5 is similar to Figure 4 but here
we have used the ECG signal. The benefit of overlapping synthesis
vectors is not as obvious here, the scheme based on the LOT is
perhaps marginally better than the rest on an overall assessment.

5. CONCLUSION

We have demonstrated that the simple block oriented frame de-
sign method in [5] may be used also for design of overlapping
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Fig. 5. As in Figure 4, but an ECG signal.

frames, filter banks with overlapping synthesis vectors. It seems
reasonable to conclude that for signal classes where filter banks
outperform transforms, overlapping frames will outperform block
oriented frames, and the improvment will be of approximately the
same magnitude.
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