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Abstract

Signal expansions using frames may be considered as generalizations of signal representations based on transforms

and filter banks. Frames, or dictionaries, for sparse signal representations may be designed using an iterative algorithm

with two main steps: (1) Frame vector selection and expansion coefficient determination for signals in a training set,

selected to be representative of the signals for which compact representations are desired, using the frame designed in

the previous iteration. (2) Update of frame vectors with the objective of improving the representation of step (1). This

method for frame design was used by [Engan et al., Signal Processing 80 (2000) 2121–2140] for block-oriented signal

expansions, i.e. generalizations of block-oriented transforms and by [Aase et al., IEEE Trans. Signal Process. 49(5)

(2001) 1087–1096] for non-block-oriented frames—for short overlapping frames, that may be viewed as generalizations

of critically sampled filter banks. Here we give the solution to the general frame design problem using the compact

notation of linear algebra. This makes the solution both conceptually and computationally easier, especially for the

overlapping frame case. Also, the solution is more general than those presented earlier, facilitating the imposition of

constraints, such as symmetry, on the designed frame vectors.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Frame; Over-complete; Dictionary; Frame design; Matching pursuit; Filter banks; Sparse signal representation
1. Introduction

Sparse representations of signals can be con-
structed using an over-complete dictionary, i.e. a
frame, and a Matching Pursuit algorithm [1–5]. In
e front matter r 2005 Elsevier B.V. All rights reserve
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recent years this has found several applications:
Low bit rate video coding [6–10], image compres-
sion [11–15], and others [16–18]. Different kinds of
frames have been used. Examples include the
frame created by concatenation of the orthogonal
basis vectors of the DCT (Discrete Cosine Trans-
form) and those of the Haar transform [13], Gabor
functions [6,8], (oversampled) filter banks and
wavelet trees [10], and Gaussian chirps [19]. These
selections are motivated by their good time-
frequency resolution and effective implementation.
The design of frames, adapted to a class of signals,
d.
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defined through the availability of a training set of
signals, has not been given much attention. Some
of the available works are [1,2,20–22]. Here we
present such a theory, encompassing [1,2] as
special cases. A key element in this work is that
by rearranging or reformulating the problem in
appropriate ways, we are able to apply standard
linear algebra methods in the solution. The frame
design method as presented here is not only related
to block-oriented transforms but it is extended
to frames that have a structure similar to filter
banks (overlapping frames) and wavelets (general
frames, or constrained frames with predefined
structure).

An over-complete set of N-dimensional vectors,
spanning the space RN , ffkg

K
k¼1 where KXN, is a

frame. The frame concept was first introduced in
the early fifties by Duffin and Schaeffer [23]. In the
late eighties frames received renewed attention,
mainly as a consequence of identified connections
with the wavelet transform and time-frequency
analysis [24,25]. In this paper frames are repre-
sented as follows: A frame is given by a matrix F of
size N � K , KXN, where the columns are the
frame vectors, fk. A signal block, xl , can be
represented by a weighted sum of these frame
vectors

~xl ¼
XK

k¼1

wlðkÞfk ¼ Fwl . (1)

This is a signal expansion that, depending on the
selection of weights, wl , may be an exact or
approximate representation of the signal block.
Since we are representing blocks of a signal, the
frames in question are referred to as block-

oriented. In this paper we focus on approximate
sparse representations in which a small number of
the weights wlðkÞ are non-zero. The weights, wlðkÞ,
can be represented by column vectors, wl , each
with K elements. F represents a frame of the space
RN , assuming that the frame vectors span RN .

In a sparse representation most of the weights
of the signal expansion of Eq. (1) are zero. To
quantify the degree of sparseness we define a
sparseness factor given by the proportion of non-
zero weights in the signal expansion to the number
of samples in the signal:

S ¼
Average number of non-zero weights in wl

Number of signal samples in xl

.

(2)

It is convenient to interpret Eq. (1) as a synthesis

equation since it explicitly indicates how the signal
approximation is synthesized. In line with this, the
frame vectors are called synthesis vectors. This
synthesis is the same operation as the reconstruc-
tion step in a transform coder [26]. The block-
oriented frame representation can thus be con-
sidered a generalization of the block-oriented
transform representation in the sense that more
synthesis vectors are available when building the
reconstructed signal. This is a consequence of
selecting KXN. Similarly, as we will see in Section
3, the overlapping frame can be considered a
generalization of a critically sampled synthesis
filter bank. A more complete presentation of the
use of frames for sparse representation, and the
relation of the frame concept to block transforms,
critically sampled filter banks as well as wavelets
can be found in [1] and [2].
In the following section we introduce notation

used throughout the paper and precisely formulate
the frame design problem. For presentation
purposes this is done for the block-oriented case,
and the solution for this case is presented.
Following this, in the main part of the paper—
Section 3, we first introduce the overlapping
frame, then give definitions of two auxiliary
matrices leading up to a formulation of the
overlapping frame design problem in a form
enabling us to directly make use of the solution
derived for the block-oriented case. We proceed in
Section 4 by showing how constraints on the
synthesis frame vectors can be incorporated into
the problem formulation. Finally, we present some
design examples and illustrate the sparse repre-
sentation capabilities of the designed frames.
2. Block-oriented frame design

The frame design methodology presented here
was first used in the context of block-oriented
frame design [1]. The frame should be adapted to a
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class of signals, represented by a large set of
training vectors, fxlg

L
l¼1, in a way that makes the

frame well suited for a sparse representation for
this class of signals. For our frame design
algorithm it is convenient to collect the training
vectors, which are consecutive blocks of a training
signal x, the synthesized vectors, the weight
vectors and the frame vectors into matrices,

X ¼ ½x1 x2 x3 . . . xL�;
~X ¼ ½ ~x1 ~x2 ~x3 . . . ~xL�;

W ¼ ½w1 w2 w3 . . . wL�;

F ¼ ½f1 f2 . . . fK �:

(3)

The synthesis equation, Eq. (1), may now be
written as

~X ¼ FW. (4)

An equivalent way to write the synthesis equation
is ~x ¼Fw, which can be illustrated as follows:

(5)

This latter equation clearly reveals the block-
oriented structure in the synthesis equation, the
large matrix F is a block-diagonal matrix.

Frame design, or the problem of seeking the
optimal frame for a given class of signals and a
given sparseness factor, is briefly summarized
below. More details can be found in [1]. The
objective is to find the frame, F, that minimizes the
approximation error kx� ~xk. For the block-
oriented case this can be expressed as an optimiza-
tion problem minF;WJðF;WÞ where

JðF;WÞ ¼ kx� ~xk2 ¼ kX� FWk2, (6)

subject to a sparsity constraint on W. The norm
used is kAk2 ¼ traceðATAÞ. This norm is used
both for matrices and vectors, for vectors it
corresponds to the ordinary 2-norm. Finding the
optimal solution to this problem is difficult if not
impossible. A practical optimization strategy, not
necessarily leading to a global optimum, but with
established good performance [1,2], can be found
by splitting the problem into two parts which are
alternately solved within an iterative loop. The
method is inspired by the generalized Lloyd
algorithm [27] and can be interpreted as a
generalization of this algorithm.
The approach starts with a user-supplied initial

frame Fð0Þ and then proceeds to improve it by
iteratively repeating two main steps using the
training signals. The ith iteration can be described as:
(1)
 WðiÞ is found by vector selection and weight
computation based on the frame FðiÞ, where
the objective function is JðWÞ ¼ kX� FðiÞWk2

and a sparseness constraint is imposed on W.
This problem is known to be NP-hard [4,28].
Nevertheless several practical approaches em-
ploying matching pursuit algorithms [29] are
known to work well in the vector selection and
weight computation. In the present work we
employ an order recursive matching pursuit
algorithm described in [30] for this purpose.
(2)
 Fðiþ1Þ is found from X and WðiÞ, where the
objective function, for the block-oriented case, is
JðFÞ ¼ kX� FWðiÞk2. In general the objective
function is JðFÞ ¼ kx� ~xk2 and purposeful
manipulations are needed to solve this, as will
be shown in Sections 3 and 4. Here though, it is
straightforward. Transposing the objective
function gives JðFÞ ¼ kXT � ðWðiÞÞTFTk2. This
optimization problem is mathematically the
same problem as that of finding a least
squares solution to an over-determined set of
linear equations [31]. The solution is FT ¼

ðWWTÞ
�1WXT, which for the present case gives:

Fðiþ1Þ ¼ XðWðiÞÞTðWðiÞðWðiÞÞTÞ�1. (7)

Then we increment i and go to step 1 above
unless some stopping criterion is satisfied.
Using this algorithm the resulting frame will
depend on (1) the selected structure of F, giving its
size and the number of free variables, (2) the initial
values chosen for the frame Fð0Þ, (3) the training
signal x representing the signal class, and (4) the
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target sparseness factor used in vector selection
in step 1 above. From Eq. (4) and Eq. (7) the
reconstructed signal is ~X ¼ XWTðWWTÞ

�1W.
Here, WTðWWTÞ

�1W is a projection matrix, thus
each row of ~X is formed by projecting the
corresponding row of X onto the space spanned
by the rows of W. The solution in Eq. (7) assumes
that WT has full rank, else the inverse of ðWWTÞ

does not exist. Experiments done have shown that
the full rank assumption is usually met. When it is
not, the case is usually that one of the synthesis
vectors of F is not used for the sparse representa-
tion of any of the training vectors (this might
happen if the set of training vectors is too small,
normally it should be at least L45K), then a row
ofW will consist of zeros only andWT will be rank
deficient. If this happens the solution can be found
by removing the unused synthesis vector from F

and the zero row from W and solve the equation
system for the rest of the frame vectors. The
unused frame vector may be replaced by a random
vector, or a segment of the training signal, this will
hopefully cause it to be used during the vector
selection step in the next iteration.
3. Overlapping frame design

In many signal processing applications critically
sampled filter banks are known to perform better
than block-oriented transforms. A uniform synth-
esis K channel filter bank is shown in Fig. 1. Using
the input–output relations for an up-sampler and a
linear filter [32], the input-output relation for the
synthesis filter bank can be verified to correspond
Fig. 1. A uniform synthesis filter bank of K filters, where the

upsampling factor is N for each filter. When K4N the filter

bank is not critically sampled. The filters are assumed to be of

the same length, PN.
to the synthesis equation ~x ¼Fw with F being a
band-diagonal matrix:

(8)

The K synthesis vectors, each of length NP, are the
columns of F, size NP� K . F is partitioned into P

sub-matrices, fFpg
P�1
p¼0 each of size N � K . At each

repetition of F in F, F is moved N positions down
and K positions to the right. The difference
between a synthesis block transform and a
synthesis filter bank can be seen quite easily by
comparing Eqs. (5) and (8). Having F as a square,
invertible matrix, i.e. K ¼ N, in Eq. (5) we get the
synthesis equation of a block-oriented transform,
while havingF as in Eq. (8) and K ¼ N we get the
critically sampled synthesis filter bank. In both
cases the synthesis equation can be written as
~x ¼Fw, and F is a large, square, usually
invertible, matrix. For the filter bank case special
considerations should be taken at the signal ends.
In both cases we get the extension to a frame when
K4N, a block-oriented frame for the block-
oriented transform (P ¼ 1), and a overlapping
frame for the filter bank case (P41). We refer to P

as the overlap factor.
The term ‘‘overlapping frame’’ comes from the

fact that the synthesis vectors of neighboring
blocks in Eq. (8) overlap each other. The over-
lapping frame is not a new concept, it is exactly the
same as an oversampled synthesis filter bank with
K filters and up-sampling factor N [33,34]. Readers
familiar with filter bank theory can note that the
splitting of F into P sub-matrices corresponds to
the polyphase representation of the synthesis
filter bank. In fact, the polyphase matrix is
RðzÞ ¼

PP�1
p¼0 Fpz�p.

We need to rearrange the synthesis equation to
be able to use the algorithm from Section 2, i.e.
extend the algorithm for block based frame design
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Fig. 2. A general synthesis filter bank of J filters.The filter

length, lj , and upsampling factor, nj , may vary for each filter.
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to overlapping frame design. Let F be defined by
Eq. (8), and substitute F into Eq. (5). The
synthesis equation for a signal block can now be
written in terms of the sub-matrices of F:

~xl ¼
XP�1
p¼0

Fpwl�p

¼ F0wl þ F1wl�1 þ � � � þ FP�1wl�Pþ1

¼ ½F0;F1; . . . ;FP�1�

wl

wl�1

..

.

wl�Pþ1

2
6666664

3
7777775. ð9Þ

Defining

bF ¼ ½F0;F1; . . . ;FP�1� and (10)

bW ¼
w1 � � � wl � � � wL

w0 � � � wl�1 � � � wL�1

..

. ..
. ..

. ..
. ..

.

w�Pþ1 � � � wl�Pþ1 � � � wL�Pþ1

2
66664

3
77775

(11)

the synthesis equation for all the signal blocks, 1
through L, can be written as

~X ¼ bF bW. (12)

The synthesis equation in Eq. (12) is in a form
suitable for our purpose, it gives the objective
function for step 2 in the design algorithm as
JðbFÞ ¼ kX� bF bWðiÞk2. The solution—in complete
analogy with the block-oriented case, is

bFðiþ1Þ ¼ Xð bWðiÞÞTð bWðiÞð bWðiÞÞTÞ�1. (13)

In all other aspects the design algorithm is the
same, but note that the vector selection step is
more involved for the overlapping case than for
the block-oriented case [35].

Note that the exact contents of the first few
columns of bW, i.e. those columns wj with jo1,
depends on assumptions on the signal outside the
range given by fxlg

L
l¼1. In practice L, the number of

blocks in the training signal set, is in the order of
several thousands, implying that whatever as-
sumptions are made on the signal outside the
training set is of minor importance. Nevertheless,
one simple way to solve the end-effect-problem is
to assume circular extension of both the signal and
the weights, xj ¼ xLþj and wj ¼ wLþj for all j. With
this the F matrix, of size NL�NK , for the case
where P ¼ 3 becomes

F ¼

F0 F2 F1

F1 F0 F2

F2 F1
. .
.

F2
. .
.

F0

. .
.

F1 F0

F2 F1 F0

2
666666666664

3
777777777775
. (14)
4. Constrained overlapping frames

As pointed out previously, the frame vectors of
Section 3 correspond to the filter unit pulse
responses of the synthesis filter bank of Fig. 1.
This filter bank is restricted in the sense that all
channels have the same upsampling factor, and the
channel filters are all of the same length (NP). A
more general synthesis filter bank allowing differ-
ent upsampling ratios and different filter lengths is
illustrated in Fig. 2. This filter bank has J different
FIR channel filters. The length of the filter for
channel j is denoted by lj and the upsampling
factor by nj . As detailed in [2] this structure
encompasses every conceivable transform, filter
bank, and wavelet decomposition expansion along
with their generalizations.
To make a frame corresponding to this general

filter bank structure we can proceed as outlined in
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the beginning of Section 3, by formulating the
input–output relations of the various channels and
collecting them using appropriately defined ma-
trix/vector quantities. Carrying out this quite
laborious, but straightforward, task, we find that
the structure of the synthesis equation, ~x ¼Fw,
can be maintained [2].

In general, the following modifications to the
quantities N;K and P, that collectively determine
the structure of F in Eq. (8), must be kept in
mind:

N ¼ least common multiple of fnjg
J
j¼1,

K ¼
XJ

j¼1

N

nj

,

P ¼ max
j

lj � nj

N

� �
þ 1, ð15Þ

where dxe is the smallest integer larger or equal to
x. Depending on the desired lengths, lj, and the
upsampling factors, nj, the F matrix will be
populated by a combination of elements of the
frame vectors and zeros. Those zeros can be
interpreted as constraints on the F matrix.
Obviously these constraints must be embedded
into the frame design algorithm.

In many design problems in signal processing,
the imposition of various symmetries plays an
important role. For example, in the design of
filters for critically sampled filter banks we may
desire filters with linear phase, i.e. unit pulse
responses that are symmetric or antisymmetric
with respect to their midpoints. Such symmetries
can be imposed by expressing relations between
pairs of elements of frame vectors of type
f ðiÞ ¼ af ðjÞ, where we have assumed that the
elements of all frame vectors are indexed sequen-
tially. Most often a will be given by 1 (to specify
even symmetries) or �1 (to specify odd symme-
tries). In the following we reformulate the design
problem presented previously in such a way as to
facilitate the incorporation of the two types of
constraints described above.

Recall that what we have done in Section 3, is to
pose the problem as that of finding a least squares
solution to an overdetermined set of linear
equations. This is our goal here too. Transposing
Eq. (12) we get

bWTbFT
¼ XT. (16)

Denoting the columns of XT, i.e. rows of X,
as fxng

N
n¼1, and the columns of bFT

, i.e. rows ofbF, as ffng
N
n¼1 the equation system can be expanded

into

bWT

bWT

. .
.

bWT

2
666664

3
777775

f1

f2

..

.

fN

2
666664

3
777775 ¼

x1

x2

..

.

xN

2
66664

3
77775. (17)

With obvious definitions, this can compactly be
expressed as

Wf ¼ x. (18)

The large matrixW has size NL�NKP. Given the
above, we are in a position to precisely explain the
implications of the previously mentioned con-
straints on the problem:
(1)
 If an element of f is forced to zero, i.e. f ðiÞ ¼ 0,
this has the consequence of removing variable
f ðiÞ in the equation set and deleting one
column of W. Thus the problem is formulated
in terms of ~W, which is the same matrix as W,
but with column no. i removed.
(2)
 If the relation f ðjÞ ¼ af ðiÞ is imposed on a pair
of elements in f, this corresponds to replacing
the W matrix by ~W which is found by adding
a times column i to column j, and removing
column i.
The above operations are repeated a number of
times consistent with the number and type of
constraints imposed by the frame design specifica-
tion. If the frame has Q free variables of its total
NKP entries, the above operations reduce the
number of columns in W from NKP to Q, the
number of rows is unchanged. The solution that
gives the free variables in the frame is

f ¼ ðWTWÞ�1WTx. (19)
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5. Sparse representation examples

We will now demonstrate the representation
capabilities of the presented algorithms. In this
work we use the ‘‘MIT100’’ ECG signal which is a
normal sinus rhythm [36], Fig. 3. As the heart
beats are triggered by impulses with a frequency in
range 1–2Hz, we may expect that a sparse
representation is relevant for the ECG signal
which here is sampled at 360Hz. The first 5min
(108000 samples) are used for training of the
frames and the next 5min for testing.

Four frames with different structures, denoted
(a)–(d) were designed. Their performances were
compared to three common methods, a block-
oriented transform (e), a filter bank ðfÞ, and a
wavelet (g). The different decomposition methods
are now explained.
(a)
Fig.
Block-oriented frame with size N ¼ 32, K ¼ 64
and P ¼ 1. The number of free variables (all
are free) is Q ¼ NKP ¼ 2048.
0 0.2 0.4 0.6 0.8 1
-50

0

50

100

150

200

250

300

seco

3. The first 2 s (720 samples) of the electrocardiogram (ECG) trai
(b)
nds

ning
Unconstrained overlapping frame with size
N ¼ 16, K ¼ 32 and P ¼ 4. The number of
free variables (all are free) is Q ¼ NKP ¼ 2048.
(c)
 Constrained overlapping frame where the
imposed structure is given, referring to Fig. 2,
by J ¼ 10 synthesis filters, filter f j has
length lj and upsampling factor nj as given by
the table below. Also symmetry constraints are
imposed: ‘-’ for none, ‘o’ for odd, and ‘e’ for
even.

The structure of F is given by Eq. (15) which
gives N ¼ 8, K ¼ 16 and P ¼ 8 and the
number of free variables is Q ¼ 58þ 3 � 60þ
6 � 12 ¼ 310.
1.2 1.4 1.6 1.8 2

signal. Three QRS complexes are shown, at 0.2, 1 and 1.8 s.
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(d)
Fig.

sym
Constrained overlapping frame where the
imposed structure is given, referring to Fig. 2,
by J ¼ 15 synthesis filters specified by

The structure of F is now given by Eq. (15),
giving N ¼ 8, K ¼ 32 and P ¼ 10, and the
number of free variables is Q ¼ 2 � 74þ 2 � 76þ
8 � 16þ 48þ 2 � 5 ¼ 486. The synthesis filters
are shown in Fig. 4.
(e)
 Discrete Cosine Transform (DCT) with size
32� 32, corresponding to a frame where the
size is given by N ¼ 32, K ¼ 32 and P ¼ 1.
(f)
 Lapped Orthogonal Transform (LOT) [37],
with size 64� 32, corresponding to a frame
where the size is given by N ¼ 32, K ¼ 32 and
P ¼ 2.
(g)
 The Daubechies 7–9 biorthogonal wavelet
filter bank using five levels. A similar recon-
struction structure can be imposed by a
constrained frame where the size is given by
N ¼ 32, K ¼ 32, and P ¼ 8.
4. The 15 synthesis filters for frame ðdÞ. Note that the symmetry c

metric and filters f 9–f 12 (third row) and f 14 are even symmetric.
representation capabilities for different frame struc-

The purpose here is to compare the sparse

tures, (a,b,c,d) to the ones of the common methods,
(e; f; g). A sparse representation is inherent for the
frame based representations, as only a limited
number of non-zero coefficients are allowed during
vector selection. Sparseness is imposed on the other
methods by thresholding of the coefficients. The
desired sparseness factor gives the number of
coefficients to keep; the larger ones are kept and
the smaller ones are set to zero. For all decomposi-
tion methods the reconstructed signal is formed as a
linear combination of the retained synthesis vectors.
In the end the signal-to-noise ratios,

SNR ¼ 20 log10
kxk

kx� ~xk
½dB�, (20)

at different sparseness factors are found and
compared. The results of the sparse representation
experiments are shown in Fig. 5. The frames are
over-complete, the factor K=N is 2 for frames (a)–(c)
and 4 for frame (d). Thus, it is reasonable to expect
the frames to achieve better SNR than the standard
decomposition methods for the same sparseness
factor. And truly, the frame with the largest ratio
K=N has the best SNR for a given sparseness factor.
From Fig. 5 we see that the frames outperform the
onstrains are fulfilled, filters f 5–f 8 (second row) and f 15 are odd
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0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
5

10

15

20

25

30

35

d: 18.51
b: 17.72
c: 16.70
a: 12.98
e:  7.23
g:  6.98
f:   6.53

d: 28.49
c: 28.01
b: 27.88
a: 27.12
e: 22.68
f: 22.46
g: 22.23

d: 32.10
c: 31.29
a: 31.10
b: 31.01
f: 28.69
e: 28.52
g: 27.37

Sparseness factor, S

S
N

R

Fig. 5. The achieved signal-to-noise ratio (SNR) in dB for sparse representation of the test signal for the different frame structures. The

sparseness factor S is along the x-axis. The numbers in the figure corresponds to SNR values in dB recorded at that point.
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transform methods, especially at low sparseness
factors, the difference between (d) and (e) is as much
as 10dB at S ¼ 0:02 and almost 6 dB at S ¼ 0:1.
For this signal, and at low sparseness factors, we
would expect that longer synthesis vectors are better
than short ones. This seems to be true only when the
synthesis vectors are adapted to the signal, the
method (e) (longest synthesis filter has length 32) is
better than both method (f) (longest synthesis filter
has length 64) and method (g) (longest synthesis filter
has length 249) even when the sparseness factor is as
small as 0.02. For the frames though, longer
synthesis vectors seem to be advantageous. The
training of the frames captures shapes from the
training signal and uses them in the synthesis vectors,
in Fig. 4 we recognize segments from the ECG signal
in Fig. 3, i.e. the QRS complex in f 1 and f 13.
6. Conclusion

In this article, we derived general solutions to
the ‘‘find the frame given the weights’’-step used in
the frame design method in [1] and [2]. These
derivations are conceptually easier, more com-
pactly expressed, and the solutions are more
general than those presented previously. The
derived solutions also facilitate the inclusion of
various design constraints. It was shown that the
designed frames adapt well to the training signal,
and that this gives excellent sparse representations
of signals belonging to the same class.
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