
FRAME BASED TEXTURE CLASSIFICATION BY CONSIDERING
VARIOUS SPATIAL NEIGHBORHOODS

Karl Skretting and John H̊akon Husøy

University of Stavanger, Department of Electrical and Computer Engineering
N-4036 Stavanger, Norway, E-mail: karl.skretting@uis.no

ABSTRACT

In this paper we briefly describe the Frame Texture
Classification Method (FTCM) and the tiled-floor tex-
ture model on which it is based. For a test image pixel
a feature vector is formed based on a small spatial
neighborhood, and FTCM calculate its distance to the
frames, i.e. the dictionaries, one frame for each tex-
ture class under consideration. The frame where the
distance is smallest gives the texture class the pixel is
assumed to belong to. The texture model gives some
guidance to how the feature vectors should be formed,
many different ways to do this are described, all being
in accordance with the texture model.

In the experiments we investigate many different
sizes and shapes for the neighborhood used when form-
ing the feature vectors. The experiments are done on
some commonly used test images of natural textures.
FTCM is flexible when selecting a neighborhood and
many patterns give excellent classification results.

1. INTRODUCTION

Classification and segmentation of texture content in
digital images is an important part of many image
analysis methods. Tuceryan and Jain [1] give a com-
prehensive overview of texture classification. Possible
applications can be grouped into: 1) texture analysis,
i.e. find some appropriate properties for a texture,
2) texture classification, i.e. identify the texture class
in a homogeneous region, 3) texture segmentation, i.e.
find a boundary map between different texture regions
of an image. The boundary map may be used for ob-
ject recognition and scene interpretation in areas such
as medical diagnostics, geophysical interpretation, in-
dustrial automation and image indexing. Finally, 4)
texture synthesis, i.e. generate artificial textures to
be used for example in computer graphics or image
compression. Some examples of applications are pre-
sented in [2, 3, 4, 5, 6].

For human beings it is quite easy to recognize dif-
ferent textures in images. We look at the whole image
at once and find the texture features at the same time
as we do image segmentation. Both these tasks are

highly knowledge dependent, we know a lot of com-
mon textures and know in which shapes and contexts
they usually occur. Computer based algorithms do
not (yet) have this large amount of knowledge avail-
able and typically do texture classification and image
segmentation in two clearly separated parts. Also,
texture classification algorithms typically have two
main parts: A local feature vector is found, which is
subsequently used for texture classification or segmen-
tation. The feature vector is generated, a lot of differ-
ent methods can be used, from the pixels in a spatial
neighborhood of a center pixel. The methods for fea-
ture extraction may be loosely grouped as statistical,
geometrical, model-based, and signal processing (fil-
tering) methods [1]. For the filtering methods the fea-
ture vectors are often built as variance estimates, local
energy measures, for each of the sub-bands of a filter
bank. Also, there are numerous classification or pat-
tern recognition methods available: The Bayes classi-
fier is probably the most common one [7, 8]. The min-
or max-selector is a simple one that can be used if each
entry in the feature vector measures the similarity to,
or corresponds to, a texture class. Nearest neighbor
classifier, vector quantization (codebook vectors rep-
resent each class) [9] and learning vector quantization
(LVQ) (codebook vectors define the decision borders)
[10, 11, 12], neural networks, watershed-based algo-
rithm [13], and support vector machines (SVM) [14]
are other methods.

In this paper Frame Texture Classification Met-
hod (FTCM) should be regarded as a supervised vec-
tor classification method. As will be explained in
Section 2 FTCM is particulary well suited under the
assumption that the vectors within each class are a
sparse linear combination of elements from a frame, i.e
a dictionary, of finite (moderate) size. This assump-
tion will be true for feature vectors generated from a
texture synthesized by the tiled-floor texture model.
FTCM is thus related to other texture classification
methods which depend on classification of the feature
vectors. It is possible that the results presented in
this paper may be useful also when other vector clas-
sification methods are used for texture classification.

We will particulary mention the relationship be-
tween FTCM and the SVM scheme as used in [15].
SVM finds a set of support vectors for each texture
and this set identifies a hyperplane which separates
the given texture from the rest of the textures, while
FTCM finds a set of frame vectors for each texture
and this set is trained to efficiently represent the given
texture by a sparse linear combination and thus iden-
tifying the texture.

2. FRAME TEXTURE CLASSIFICATION
METHOD

The FTCM is a supervised texture classification met-
hod. It was first introduced in [16], and is also pre-
sented in [17] and [18]. Here follows a brief presenta-
tion of the underlaying deterministic texture model,
followed by the two parts of FTCM.

2.1. The tiled-floor texture model

The main result of this subsection is that it is reason-
able to model a small texture image block as a sparse
linear combination of frame elements.

In the proposed texture model a texture is mod-
elled as a tiled floor, where all tiles are identical.
We let the coordinate system be aligned to match a
tile, such that the center of the first tile is given by
(x, y) = (1

2 , 1
2), and the corners are (0, 0), (1, 0), (0, 1),

and (1, 1). The color, or gray-level, at a given po-
sition on the floor is given by a continuous periodic
two-dimensional function which we denote c(x, y) =
c(x − bxc, y − byc). A finite number, denoted M , of
control points, denoted ci, are placed on each tile. The
function is defined as a bilinear interpolation of four
of the (closest) control points, i.e. c(x, y) = a1ci1 +
a2ci2 + a3ci3 + a4ci4 . The bilinear interpolation is ac-
tually a convex combination, with a1+a2+a3+a4 = 1
and 0 ≤ ak ≤ 1.

Samples of c(x, y) on a rectangular sampling grid,
not necessarily aligned with the coordinate system im-
plied by the first tile, constitute the digital texture
image. By choosing 1) the number and positions of
control points in a tile, 2) the gray-level value (color)
of each of the control points, 3) the orientation of
the sampling grid relative to the coordinate system
aligned with the tiles, denoted by angle α, and fi-
nally, 4) the distance between neighboring sampling
points, denoted by δ, in the sampling grid, we obtain
a digital texture image.

We will now look closer on a small block of pixels
from the texture image. This block is arranged into
a size N vector, x = [x(1), x(2), . . . , x(N)]T , x(1) is
the upper left pixel and the rest are numbered co-
lumnwise. Remember that each entry of x, i.e. each
pixel, is a convex combination of four control points

taken from a finite set of M control points. Given the
model above, it was shown in [18] that the vector x
is a convex combination of four frame vectors taken
from a finite set of at most MN2 frame vectors.

2.2. Frame design

For a particular texture image, specified by the model
above, i.e. by control points and by a sampling grid,
we could find the correct frame. But in FTCM a more
general method is used to design the frame, the frame
is not designed based on knowledge on how the texture
image was made, but only based on a set of training
vectors generated from an example image. Each train-
ing vector is approximated by a linear combination of
(three or) four frame vectors. The frame is designed
to achieve the best total sparse representation for all
the training vectors. How the training vectors are
formed is discussed in Section 3.

The parameters used during design are N , K, L
and s. The length of the training (and frame) vectors
is N . The number of vectors in the frame is denoted
K. For practical reasons it should be quite small, we
may use N ≤ K ≤ 10N ¿ MN2. To avoid overtrain-
ing the number of training vectors L should be much
larger than K, K ¿ L. The sparseness to use in the
approximation is denoted s, here we use the values
s = 3 and s = 4.

For each texture class the training vectors are ar-
ranged into a N × L matrix, X = [x1x2 . . .xL]. We
want to find a frame with K frame vectors, F =
[f1f2 . . . fK], such that each of the training vectors can
be approximated by a sparse combination of the frame
vectors, xl ≈ Fwl where wl has at most s non-zero en-
tries. Having W = [w1w2 . . .wL] the objective func-
tion to be minimized, with a sparseness constraint on
W, is

J = J(F,W) = ‖X− FW‖2. (1)

Finding the optimal solution to this problem is dif-
ficult if not impossible. We split the problem into
two parts to make it more tractable, similar to what
is done in the GLA design algorithm for VQ code-
books [19]. The iterative solution strategy presented
below results in good, but in general suboptimal, so-
lutions to the problem.

The algorithm starts with a user supplied initial
frame F0, usually K arbitrary vectors from the set of
training vectors, and then improves it by iteratively
repeating two main steps:

1. Wt is found by vector selection using frame Ft.
The objective function is J(W) = ‖X−FtW‖2,
and a sparseness constraint is imposed on W.

2. Ft+1 is found from X and Wt, where the ob-
jective function is J(F) = ‖X − FWt‖2. This

gives:
Ft+1 = XWT

t

(
WtWT

t

)−1 (2)

Then we increment t and go to step 1.

t is the iteration number. The first step is suboptimal
due to the use of practical vector selection algorithms,
while the second step finds the F that minimizes the
objective function.

2.3. Classification

Texture classification of a test image, containing re-
gions of different textures, is the task of classifying
each pixel of the test image to belong to a certain
texture. This is done by generating test vectors from
the test image using the same method as when the
training vectors were generated.

A test vector is represented in a sparse way us-
ing each of the different frames that were trained for
the textures under consideration, the set of C frames
{F(i)}. The distance between test vector xl and frame
F(i) is the 2-norm (length) of the representation error
for the best sparse representation of the test vector,
d
(i)
l = ‖r(i)

l ‖ and r(i)
l = xl−F(i)w(i)

l . Each test vector
xl corresponds to a pixel of the test image. Classifi-
cation consists of selecting the index i for which the
norm, or norm squared, of the representation error,
‖r(i)

l ‖2 = r(i)T
l r(i)

l , is minimized.
Direct classification based on the norm squared of

the representation error for each test vector (pixel)
gives quite large classification errors, but the results
can be substantially improved by smoothing the er-
ror images. Smoothing is reasonable since it is likely
that neighboring pixels belong to the same texture.
For smoothing we have used the separable Gaussian
low-pass filter. The effect of smoothing is mainly that
more smoothing gives better classification within the
texture regions but lower resolution, i.e. often more
classification errors along the borders between differ-
ent texture regions.

To improve texture segmentation a nonlinearity
may be included before the smoothing filter is applied,
[20]. We have found that the logarithmic nonlinearity
often gives the best results, [16].

3. SELECTING PIXELS IN LOCAL
NEIGHBORHOOD

We will here show that the training and test vectors
(feature vectors) can be made in many different ways
and still be in accordance with the model in subsec-
tion 2.1. Let us assume that the block around each
pixel is of size 13× 13, giving N = 169 as the length
of vector x. The “perfect” frame is F of size N ×K
where K = MN2, M is the number of control points
on one tile. In accordance with the model we have

x = Fw, where w is a sparse vector with only four
non-zero entries.

Let another feature vector x′ be formed as x′ =
Ax where A is a N ′ × N matrix, N ′ ≤ N . Keeping
w the same as above, i.e. still sparse, this gives x′ =
A(Fw) = (AF)w = F′w, and we see that also x′

can be represented by a linear combination of four
frame vectors taken from a finite set of frame vectors,
F′ = AF.

Suppose each row in A has only one non-zero en-
try. This gives the case where the feature vectors are
formed by a pattern of pixels around the center pixel.
Some examples are illustrated in patterns 1-9 in Fig-
ure 1. The non-zeros entries of A are here assumed to
be 1, but it is also possible to form a weighted pattern.

Without restrictions on the entries of A each ele-
ment of x′ is a linear combination of the elements in x.
This is the same as the output of different FIR-filters
applied on the pixels in the local neighborhood of the
central pixel, each row of A gives the coefficients of
each filter. The patterns 14-18 in Figure 2 are formed
this way.

In the model a vector is formed by a bilinear in-
terpolation of frame vectors, i.e. a sparse convex
combination where each coefficient 0 ≤ ak ≤ 1 and∑

ak = 1. In vector selection, and the equation
x = Fw, a sparse linear combination is used. The co-
efficients, ak, are the non-zero entries of w. It is not
trivial to include the convex constraint into the vec-
tor selection algorithm, but an affine constraint, i.e.∑

ak = 1, can be implemented without any changes
to the linear vector selection algorithm. Let

x′ =
[

b
x

]
and F′ =

[
b b · · · b
f1 f2 · · · fK

]
. (3)

where b 6= 0. Then the linear combination x′ = F′w
must also be an affine combination. Patterns 10-13,
15, 16 and 18 in Figure 2 all have an extra fixed el-
ement added. Pattern 10 is like pattern 1 except for
the fixed element, 11 is like 5, 12 is like 3, 13 is like 6,
15 is like 14, and 18 is like 17.

Here we have argued that the feature vectors may
be generated in many different ways from the pixels
in a spatial neighborhood of the central pixel. Neither
the model nor the theory give any clear guidance to
which is better. Obviously each vector should contain
the necessary texture information for this particular
center pixel, but it does not need to contain informa-
tion on the neighboring pixels (smoothing). For the
complexity of the methods, the smaller feature vectors
should be preferred. In the next section extensive ex-
periments are presented, all the 18 different methods
shown in Figure 1 and Figure 2 are tested.

Pattern 1, N=9 Pattern 2, N=16 Pattern 3, N=25

Pattern 4, N=49 Pattern 5, N=13 Pattern 6, N=21

Pattern 7, N=21 Pattern 8, N=49 Pattern 9, N=39

Figure 1: Pixels around the center pixel, marked by a
square, used to form the local feature vector for the 9
simple cases. N is the number entries in the feature
vector, here it the same as the number of pixels in
each pattern.

Pattern 10, N=10 Pattern 11, N=14 Pattern 12, N=26

Pattern 13, N=22 Pattern 14, N=25 Pattern 15, N=26

Pattern 16, N=25 Pattern 17, N=17 Pattern 18, N=18

Figure 2: More patterns, here an extra fixed value
element is added to each feature vector, except for
pattern 14 and 17. Feature vectors for patterns 14 to
18 are formed by filtering over the pixels indicated by
plus sign, for pattern 17 and 18 the Daubechies 7-9
wavelet filters are used. N is the number entries in
the feature vector.

(a) (b)

Figure 3: Two of the nine test images used.

4. EXPERIMENTS

FTCM and the 18 different patterns for the feature
vectors, described in Section 3, were tested both for
synthesized texture images made based on the model
and for natural real textures. It turned out that all
patterns achieved very well on the synthesized test im-
ages, and the differences between them were marginal.
Thus, this section presents the results for the natural
textures.

As in [18] we choose to use the nine test images
of Randen and Husøy [11] for natural real textures.
These consist of 77 different natural textures, taken
from three different and commonly used texture sour-
ces: The Brodatz album, the MIT Vision Texture
database, and the MeasTex Image Texture Database.
The test images are denoted (a) to (i). (a) and (b)
are shown in Figure 3, all are shown in Figure 11
in [11], where also a more detailed description of the
test images can be found1. The same test images were
also used in other papers [21, 8, 13, 15, 22]. The ex-
cellent performance of FTCM compared to the other
methods was reported in [18], the purpose here is to
compare the different patterns to each other.

The experiments started by designing the frames
to be used, one frame for each kind of training vector
and texture under consideration. The frame parame-
ters, see Subsection 2.2, used were: N as given by the
pattern, K = 6N but minimum 100 and maximum
200, s = 3 for N < 30 and s = 4 for N ≥ 30, and
L = 14400. 250 iterations were done.

During classification of each test image we use
only the frames corresponding to the textures that are
present in the test image. A logarithmic nonlinearity
and a separable Gaussian low-pass filter were used.
The standard deviation σ in the filter varied, but here
we present the complete results only for σ = 10, the
size of this low pass filter was cut at approximately
2σ at each end, giving the filter size 39 × 39 pixels.
These results are shown in Table 1.

1The training images and the test images are available at
http://www.ux.his.no/̃ tranden/

Pattern (parameters: N ×K, s) a b c d e f g h i Mean
1 (9× 100, 3) 4.0 9.3 12.0 26.6 19.4 28.2 26.3 32.4 28.8 20.8
2 (16× 100, 3) 4.9 10.2 8.5 10.5 8.1 20.7 18.1 25.3 22.8 14.3
3 (25× 150, 3) 5.2 14.1 8.7 7.0 6.7 18.0 14.4 23.0 23.0 13.4
4 (49× 200, 4) 4.8 15.8 9.3 10.7 6.4 16.9 15.8 15.0 24.0 13.2
5 (13× 100, 3) 4.7 12.0 8.2 10.2 9.9 26.9 16.7 24.9 17.3 14.5
6 (21× 126, 3) 4.4 9.9 10.4 13.2 7.1 23.5 17.9 19.3 27.2 14.8
7 (21× 126, 3) 4.6 13.3 9.0 9.6 8.9 23.3 16.6 16.1 26.6 14.2
8 (49× 200, 4) 4.2 18.3 10.8 8.4 8.5 16.3 17.3 16.0 23.8 13.7
9 (39× 200, 4) 4.5 15.4 10.4 9.2 7.7 18.5 16.2 15.7 24.6 13.6
10 (10× 100, 3) 3.4 10.7 6.2 24.7 8.7 22.5 23.9 33.1 21.4 17.2
11 (14× 100, 3) 5.9 6.7 8.0 5.8 5.4 23.5 14.3 21.2 10.0 11.2
12 (26× 156, 3) 5.9 12.7 9.4 6.3 6.3 19.0 15.7 16.5 15.7 11.9
13 (22× 132, 3) 5.3 9.3 10.9 8.2 7.4 17.8 20.4 15.1 19.4 12.6
14 (25× 150, 3) 3.8 10.6 5.6 18.1 5.2 17.2 11.2 17.9 19.0 12.1
15 (26× 156, 3) 8.6 6.7 6.7 11.0 5.6 16.3 13.5 16.1 17.2 11.3
16 (25× 150, 3) 8.2 9.2 12.5 12.0 5.5 19.7 16.6 17.4 21.4 13.6
17 (17× 102, 3) 4.7 8.5 7.7 14.4 6.5 18.9 15.1 18.4 14.2 12.0
18 (18× 108, 3) 7.1 8.6 7.3 9.7 6.3 16.5 18.3 17.6 15.0 11.8

11+15+18, see text 7.4 5.8 7.0 5.8 4.7 16.5 13.1 16.4 9.9 9.6

Table 1: Classification errors, given as percentage wrongly classified pixels, for different methods and natural
test images.

Let us look closer at the average results for the 9
test images. These are presented in Figure 4, on the
left side for σ = 1, here low-pass filtering is done us-
ing a small 3 × 3 and narrow filter, and on the right
side for σ = 10. We note that with little low-pass fil-
tering the longer feature vectors perform best, while
using more appropriate low-pass filtering it seems that
longer feature vectors do not improve the results. The
most probable explanation is that the longer feature
vectors also contain some of the “smoothing” informa-
tion. We also conclude that almost all methods seems
to capture the essential texture information quite well.
Methods 11, 15, and 18 do all very well.

To see how an extra constant element added to the
feature vector influence on the results we compare the
results, taken from Table 1, of the six patterns, 1, 5,
3, 6, 14 and 17 to the six similar patterns, 10, 11, 12,
13, 15 and 18. We note that adding an extra element
give better results almost always, the means (of the
means) are 14.6 and 12.7 percent wrongly classified
pixels. The conclusion seems to be clear, adding the
extra element improves the results. This is in line
with the model where an affine combination is pre-
ferred to a linear combination. Looking at the details
the conclusion is not that clear, three of the test im-
ages, c, e and g, are best classified using method 14.
Generally, the details give more scattered results, in-
dicating that the choice of pattern is dependent on
the test image. Also, training has a random element
both in selection of the training vectors, the initial

frame, and the training process, resulting in slightly
different frames each time a frame is trained. This
random effect obviously has an impact on the results,
and can explain some of the scattering. More work is
needed to understand this better.

To get even better results it is possible to do aver-
aging without smoothing. This is possible since sev-
eral representation errors for each pixel, one for each
of the patterns, are available. Averaging these for pat-
terns 11, 15, and 18 before smoothing (and before the
logarithmic nonlinearity is applied) gives the results
presented in last line of Table 1.

5. CONCLUSION

Many of the different sizes and shapes for the neigh-
borhood used to form the feature vectors gave excel-
lent results when FTCM was used for vector classifi-
cation. It seems that the small 3 × 3 pattern, used
in method 1 and 10, is too small. Adding just a few
more pixels, as in pattern 2, 5 and 11, seems to cap-
ture the texture information well and gives very good
results. Pattern 11 seems best, considering both sim-
plicity and results. To get optimal classification re-
sults several patterns can be combined.

6. REFERENCES

[1] M. Tuceryan and A. K. Jain, “Texture analysis,” in Hand-
book of Pattern Recognition and Computer Vision, C. H.
Chen, L. F. Pau, and P. S. P. Wang, Eds. Singapore:
World Scientific Publishing Co, 1998, ch. 2.1, pp. 207–248.

5 10 15 20 25 30 35 40 45 50
40

45

50

55

60

65
1

2
3

4

5

6

7

89

10

11

12

13

14

15

16
17

18

Mean for the 9 test images, σ = 1

P
er

ce
nt

ag
e

w
ro

ng
ly

 c
la

ss
ifi

ed
 p

ix
el

s.

Length of feature vectors, N.
5 10 15 20 25 30 35 40 45 50

11

12

13

14

15

16

17

18

19

20

21
1

2

3
4

5
6

7

8
9

10

11

12

13

14

15

16

17
18

Mean for the 9 test images, σ = 10

P
er

ce
nt

ag
e

w
ro

ng
ly

 c
la

ss
ifi

ed
 p

ix
el

s.

Length of feature vectors, N.

Figure 4: The average percentage wrongly classified pixels for the 9 test image, here with σ = 1 in low-pass
filter to the left and σ = 10 to the right.

[2] R. J. Dekker, “Texture analysis and classification of
ERS SAR images for map updating of urban areas in
the Netherlands,” IEEE Trans. Geosci. Remote Sensing,
vol. 41, no. 9, pp. 1950–1958, Sept. 2003.

[3] M. K. Kundu and M. Acharyya, “M-band wavelets: Ap-
plication to texture segmentation for real life image anal-
ysis,” International Journal of Wavelets, Multiresolution
and Information Processing, vol. 1, no. 1, pp. 115–149,
2003.

[4] F. Mendoza and J. M. Aguilera, “Application of image
analysis for classification of ripening bananas,” Journal of
Food Science, vol. 69, no. 9, pp. 471–477, Nov. 2004.

[5] S. Arivazhagan and L. Ganesan, “Automatic target detec-
tion using wavelet transform,” EURASIP Journal on Ap-
plied Signal Processing, vol. 2004, no. 17, pp. 2663–2674,
2004.

[6] S. Singh and M. Singh, “A dynamic classifier selection and
combination approach to image region labelling,” Signal
Processing Image Communication, vol. 30, no. 3, pp. 219–
231, Mar. 2005.

[7] M. Unser, “Texture classification and segmentation using
wavelet frames,” IEEE Trans. Image Processing, vol. 4,
no. 11, pp. 1549–1560, Nov. 1995.

[8] S. Liapis, E. Sifakis, and G. Tziritas, “Colour and texture
segmentation using wavelet frame analysis, deterministic
relaxation, and fast marching algorithms,” Journal of Vi-
sual Communication and Image Representation, vol. 15,
no. 1, pp. 1–26, Mar. 2004.

[9] G. F. McLean, “Vector quantization for texture classifica-
tion,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3,
pp. 637–649, May/June 1993.

[10] T. Kohonen, “The self-organizing map,” Proc. IEEE,
vol. 78, no. 9, pp. 1464–1480, Sept. 1990.

[11] T. Randen and J. H. Husøy, “Filtering for texture classifi-
cation: A comparative study,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 21, no. 4, pp. 291–310, April 1999.

[12] C. Diamantini and A. Spalvieri, “Quantizing for minimum
average misclassification risk,” IEEE Trans. Neural Net-
works, vol. 9, no. 1, pp. 174–182, Jan. 1998.

[13] N. Malpica, J. E. Ortuño, and A. Santos, “A multichannel
watershed-based algorithm for supervised texture segmen-
tation,” Pattern Recognition Letters, vol. 24, no. 9-10, pp.
1545–1554, June 2003.

[14] S. Li, J. T. Kwok, H. Zhu, and Y. Wang, “Texture classifi-
cation using the support vector machines,” Pattern Recog-
nition, vol. 36, no. 12, pp. 2883–2893, Dec. 2003.

[15] K. I. Kim, K. Jung, S. H. Park, and H. J. Kim, “Support
vector machines for texture classification,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 24, no. 11, pp. 1542–
1550, Nov. 2002.

[16] K. Skretting, “Sparse signal representation using over-
lapping frames,” Ph.D. dissertation, NTNU Trondheim
and Høgskolen i Stavanger, Oct. 2002, available at
http://www.ux.his.no/̃ karlsk/.

[17] K. Skretting and J. H. Husøy, “Texture classification us-
ing sparse frame based representations,” in NORSIG-02,
Tromsø/Trondheim, Norway, Oct. 2002, also available at
http://www.ux.his.no/̃ karlsk/.

[18] ——, “Texture classification using sparse frame based rep-
resentations,” EURASIP Journal on Applied Signal Pro-
cessing, 2005, accepted for publiction, to be printed au-
tumn 2005.

[19] A. Gersho and R. M. Gray, Vector Quantization and Sig-
nal Compression. Norwell, Mass., USA: Kluwer Academic
Publishers, 1992.

[20] M. Unser and M. Eden, “Nonlinear operators for im-
proving texture segmentation based on features extracted
by spatial filtering,” IEEE Trans. Syst., Man, Cybern.,
vol. 20, pp. 804–815, 1990.

[21] M. Acharyya, R. K. De, and M. K. Kundu, “Extrac-
tion of features using M-band wavelet packet frame and
their neuro-fuzzy evaluation for multitexture segmenta-
tion,” IEEE Trans. Pattern Anal. Machine Intell., vol. 44,
no. 12, pp. 1639–1644, Dec. 2003.

[22] T. Ojala, K. Valkealahti, E. Oja, and M. Pietikäinen,
“Texture discrimination with multidimensional distribu-
tions of signed gray-level differences,” Pattern Recogni-
tion, vol. 34, no. 3, pp. 727–739, Mar. 2001.

