

Stress concentration factor K_c

- Obtained experimentally, analytically, etc
- Published in charts
- Geometric property
- Very important in *brittle* materials
- In ductile materials:
 - Important in *fatigue* calculation.
 - Important if safety is critical.
 - Localized yielding hardens material (strain hardening).
 - Redistributes stress concentration.

Text Reference: Figure 6.5, page 225

Yield Stress and Fracture Toughness Data (@room Temperature)				
Metals				
Aluminum alloy 2024-T351	47	325	33	36
Aluminum alloy 7075-T651	73	505	26	29
Alloy steel 4340 tempered at 260°C	238	1640	45.8	50.0
Alloy steel 4340 tempered at 425°C	206	1420	80.0	87.4
Titanium alloy Ti-6Al-4V	130	910	40-60	44-66
Ceramics				
Aluminum oxide			2.7-4.8	3.0-5.3
Soda-lime glass			0.64-0.73	0.7-0.8
Concrete			0.18-1.27	0.2-1.4
Polymers				
Polymethyl methacrylate			0.9	1.0
Polystyrene			0.73-1.0	0.8-1.1
Text Reference: Table 6.1 nage 232				

Stress intensity factor

• Recall critical crack length = 2 a.

$$a = \frac{1}{p} \left(\frac{K_{ci}}{Y s_{nom}} \right)^2 \qquad K_{ci} = \text{Fracture toughness, from tables} \\ Y = \text{Geometric correction factor}$$

• So fracture toughness is $K_{ci} = Y \mathbf{s}_{nom} \sqrt{\mathbf{p}a}$

If the actual crack length is 2*x*, the **stress intensity**
factor is defined as
$$K_i = Y \mathbf{s}_{nom} \sqrt{\mathbf{p}x}$$

- Crack will propagate if $K_i > K_{ci}$, or 2x > 2a.
- Safety factor against crack propagation is K_{ci}/K_i .