DMS6021 - Dynamics and Control of Mechanical Systems Jimma University, Spring 2021

Date	Topics
Day 1	1. Review of the basics of mechanics.
(10/05)	
Day 2	2. Kinematics of rigid bodies - coordinate transformation, angular velocity vector,
(11/05)	description of velocity and acceleration in relatively moving frames.
Day 3	3. Euler angles, Review of methods of momentum and angular momentum of
(12/05)	system of particles, inertia tensor of rigid body.
Day 4	4. Dynamics of rigid bodies - Euler's equation, application to motion of symmetric
(13/05)	tops and gyroscopes and problems of system of bodies.
Day 5	5. Kinetic energy of a rigid body, virtual displacement and classification of
(14/05)	constraints.
	6. D' Alembert's principle.
Day 6	Tutorial 1: Introduction to use of MATLAB in matrix manipulation
(15/05)	
Day 7	7. Introduction to generalized coordinates, derivation of Lagrange's equation from D'
, (17/05)	Alembert's principle.
Day 8	8. Small oscillations, matrix formulation, Eigen value problem and numerical
(18/05)	solutions.
Day 9	9. Modelling mechanical systems, computer generation and solution of equations of
(19/05)	motion.
Day 10	10. Introduction to complex analytic functions, Laplace and Fourier transform.
(20/05)	
Day 11	11. PID controllers, Phase lag and Phase lead compensation.
(21/05)	12. Analysis of Control systems in state space, pole placement.
Day 12	Exercise/Tutorial 2: Computer simulation of control systems using MATLAB
(22/05)	
Note	Lecture time: 08:30 – 11:30 (02:30 – 05:30 local time) and/or
	04:00 - 06:30 (10:00 - 12:30 local time)

Course Evaluation

•	Mid semester examination (two tests)	30%
٠	One project report without presentation	20%
•	Final examination	50%

References

- 1. T.R. Kane, David A. Levinson, Dynamics: Theory and Applications, McGraw-Hill.
- 2. Donald T. Greenwood, Advanced Dynamics -- Cambridge University Press
- 3. Ferdinand P. Beer et al., Vector Mechanics for Engineers, Dynamics, -McGraw-Hill Sci
- 4. Lennart Ljun and Torkel Glac, Modelling of dynamic systems, P T R Prentice Hall International.
- 5. Katsuhiko Ogata, Modern Control Engineering, 5th ed., Prentice Hall
- 6. Other relevant sources