«Complex Analysis & Dynamical Systems VI» dedicated to the 60th Birthday of Professor David Shoikhet

Boundary behaviour of one-parameter semigroups and evolution families

PAVEL GUMENYUK

Università degli studi di Roma "Tor Vergata" Nahariya – ISRAEL, May 23, 2013

Definition

A one-parameter semigroup in $\mathbb{D} := \{z : |z| < 1\}$ is a continuous homomorphism from $(\mathbb{R}_{\geq 0}, +)$ to $(Hol(\mathbb{D}, \mathbb{D}), \circ)$. In other words, a one-parameter semigroup is a family $(\phi_t)_{t\geq 0} \subset Hol(\mathbb{D}, \mathbb{D})$ such that (i) $\phi_0 = id_{\mathbb{D}}$;

(ii)
$$\phi_{t+s} = \phi_t \circ \phi_s = \phi_s \circ \phi_t$$
 for any $t, s \ge 0$;

(iii)
$$\phi_t(z) \to z \text{ as } t \to +0 \text{ for any } z \in \mathbb{D}.$$

One-parameter semigroups appear, e.g. in:

- ► iteration theory in D as *fractional iterates*;
- operator theory in connection with *composition operators*;
- embedding problem for time-homogeneous stochastic processes;
- ► as flows of semicomplete autonomous holomorphic vector fields.

Universita' di Roma TOR VERGATA

Definition

A *boundary fixed point (BFP)* of $\phi \in Hol(\mathbb{D}, \mathbb{D})$ is a point $\sigma \in \mathbb{T} := \partial \mathbb{D}$ at which

$$\angle \lim_{z\to\sigma}\phi(z)=\sigma.$$

The *multiplier* at the BFP σ is $\lambda(\sigma) = \phi'(\sigma) := \angle \lim_{z \to \sigma} (\phi(z) - \sigma)/(z - \sigma)$ $= \liminf_{z \to \sigma} \frac{1 - |\phi(z)|}{1 - |z|}.$

If $\lambda(\sigma) \neq \infty$, then the BFP σ is said to be *regular* (*BRFP*).

Definition

For a fixed point $z_0 \in \mathbb{D}$, the multiplier is $\lambda(z_0) = \phi'(z_0)$.

Definition

The Denjoy – Wolff point (DW-point) τ of $\phi \in Hol(\mathbb{D}, \mathbb{D}) \setminus \{id_{\mathbb{D}}\}\$ is the unique fixed point $\tau \in \overline{\mathbb{D}}$ (in the interior or boundary sense) at which the multiplier $|\lambda(\tau)| \leq 1$.

In what follows we will assume that

all one-parameter semigroups (ϕ_t) we consider are not conjugated to rotation, or, equivalently, that $\phi_t \neq id_{\mathbb{D}}$ for all t > 0.

Remark

Elements ϕ_t , t > 0, of a 1-parameter semigroup (ϕ_t) share the same:

- Denjoy Wolff point;
- interior and boundary fixed points;
- BRFPs.

Theorem 1 (Contreras, Díaz-Madrigal, Pommerenke, 2004; **P. Gum.**, ArXiv:1211.3965)

Let (ϕ_t) be a one-parameter semigroup in \mathbb{D} . Then:

(i) for all $t \ge 0$ and **every** $\sigma \in \mathbb{T}$ there exists the angular limit

 $\phi_t(\sigma) := \angle \lim_{z \to \sigma} \phi_t(z).$

- (ii) moreover, for each $\sigma \in \mathbb{T}$ and each Stolz angle *S* at σ the continuity of $\phi_t|_{S \cup \{\sigma\}}$ at σ is locally uniform w.r.t. $t \ge 0$;
- (iii) the family of functions ("trajectories")

 $\left\{ [0, +\infty) \ni t \mapsto \phi_t(z) : z \in \overline{\mathbb{D}} \right\}$

is uniformly equicontinuous;

(iv) $\phi_{t+s}(z) = \phi_t(\phi_s(z))$ holds also for all $z \in \partial \mathbb{D}$.

Universita' di Roma TOR VERGATA

Remark

Theorem 1 does NOT imply existence of unrestricted limits

 $\lim_{\mathbb{D}\ni z\to\sigma}\phi_t(z),\quad \sigma\in\mathbb{T}.$

Theorem 2 (Contreras, Díaz-Madrigal, Pommerenke, 2004; P. Gum., ArXiv:1211.3965)

Let (ϕ_t) be a one-parameter semigroup in \mathbb{D} and $\sigma \in \mathbb{T}$ its boundary fixed point. Then:

(UnrLim) for any $t \ge 0$ there exists the unrestricted limit

 $\lim_{\mathbb{D} \ni z \to \sigma} \phi_t(z) \quad \text{[clearly} = \sigma\text{]},$

(EqCont) the continuity of $\phi_t|_{\mathbb{D}\cup\{\sigma\}}$ at σ is locally uniform w.r.t. $t \ge 0$.

U

Some remarks on Theorem 2.

- Solution Contreras, Díaz-Madrigal, and Pommerenke proved (UnrLim) for the case of the DW-point $\tau \in \mathbb{D}$.
- Their main idea was to show that the Kœnigs function of (ϕ_t) is continuous at BFPs (as a map to $\overline{\mathbb{C}}$).
- So For the case of $\tau \in \mathbb{T} := \partial \mathbb{D}$:
 - $\textcircled{\begin{subarray}{c} \begin{subarray}{c} \b$
 - ^(C) but it fails for $\sigma = \tau$, because in fact the Kœnigs function does NOT need to be continuous at the boundary DW-point.

These results can be found in

P. Gumenyuk, Angular and unrestricted limits of one-parameter semigroups in the unit disk. Preprint, 32pp. ArXiv:1211.3965

Definition (Bracci, Contreras, Díaz-Madrigal, 2012) A family $(\varphi_{s,t})_{0 \le s \le t} \subset \text{Hol}(\mathbb{D}, \mathbb{D})$ is an evolution family of order $d \in [1, +\infty]$ if EF1. $\varphi_{s,s} = \text{id}_{\mathbb{D}}$ for all $s \ge 0$; EF2. $\varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}$ if $0 \le s \le u \le t$; EF3. for any $z \in \mathbb{D}$ there exists a function $k_z \in L^d_{\text{loc}}([0, +\infty))$ s.t. $|\varphi_{s,u}(z) - \varphi_{s,t}(z)| \le \int_u^t k_z(\xi) d\xi, \ 0 \le s \le u \le t.$ (1)

Remarks

■ This notion is a *non-autonomous generalization* of one-parameter semigroups. Indeed, if (ϕ_t) is a one-parameter semigroup, then $\varphi_{s,t} := \phi_{t-s}, t \ge s \ge 0$, is an evolution family of order $d = +\infty$.

It comes from the much-celebrated *Loewner Theory*. ■

Remarks

- In contrast to one-parameter semigroups, *every univalent* $\phi \in Hol(\mathbb{D}, \mathbb{D})$ can be embedded into an evolution family.
- Solution family ($\varphi_{s,t}$) are *univalent functions*.
- Evolution families can be described by means of a certain non-autonomous semicomplete ODE.

This ODE, known as the general Loewner ODE, is of the form

$$\frac{d}{dt}\varphi_{s,t}(z) = G(\varphi_{s,t}(z), t), \quad t \ge s; \quad \varphi_{s,t}(z)\big|_{t=s} = z.$$
(2)

The function G in the r.h.s. is referred to as a Herglotz vector field.

Definition (Bracci, Contreras, Díaz-Madrigal, 2012) A function $G : \mathbb{D} \times [0, +\infty) \to \mathbb{C}$ is said to be a *Herglotz vector field* of order $d \in [1, +\infty]$, if:

(i) for a.e. $t \ge 0$ fixed, the function $G(\cdot, t)$ is an infinitesimal generator of some one-parameter semigroup in \mathbb{D} , *i.e.* [Berkson–Porta, 1978]

$$G(z,t) = (\tau_t - z)(1 - \overline{\tau_t}z)p_t(z),$$
(3)

where $\tau_t \in \overline{\mathbb{D}}$ and $p_t \in Hol(\mathbb{D}, \mathbb{C})$ with $\operatorname{Re} p_t \ge 0$;

(ii) for each $z \in \mathbb{D}$ fixed, the function $G(z, \cdot)$ is measurable on $[0, +\infty)$;

(iii) for each compact set $K \subset \mathbb{D}$ there exists a non-negative function $k_K \in L^d_{loc}([0, +\infty))$ such that $\sup_{z \in K} |G(z, t)| \leq k_K(t)$ for a.e. $t \geq 0$.

Evolution families and Hergtlotz VFs

Theorem (Bracci, Contreras, Díaz-Madrigal, 2012)

Let $(\varphi_{s,t}) \subset \text{Hol}(\mathbb{D}, \mathbb{D})$, $d \in [1, +\infty]$. Then $(\varphi_{s,t})$ is an evolution family of order $d \iff$ there exists a Herglotz vector field *G* of the same order d s.t. for any $s \ge 0$, $z \in \mathbb{D}$, the function $w = w_{z,s}(t) := \varphi_{s,t}(z)$ is the positive trajectory of the general Loewner ODE

$$dw/dt = G(w(t), t), \quad t \ge s; \quad w(s) = z.$$
 (4)

Theorem (Bracci, Contreras, Díaz-Madrigal, 2012)

In the above theorem, the correspondence between the evolution families and Herglotz vector fields is <u>one-to-one</u> and <u>onto</u>.

F. Bracci, M.D. Contreras, S. Díaz-Madrigal and P. Gumenyuk, Boundary regular fixed points in Loewner Theory. Preprint, 28pp. ArXiv:1303.5216

Theorem 3 (Bracci, Contreras, Díaz-Madrigal, P. Gum.; ArXiv'13)

Let $(\varphi_{s,t})$ be an evolution family, *G* its Herglotz vector field and $\sigma \in \mathbb{T}$. Then the following two assertions are " \iff ":

(i) σ is a BRFP of $\varphi_{s,t}$ for each $s \ge 0$ and $t \ge s$;

(ii) the following two conditions hold:

(ii.1) for a.e. $t \ge 0$, $G(\cdot, t)$ has a BRNP at σ , *i.e.* there exists

$$G'(\sigma,t) := \angle \lim_{z \to \sigma} \frac{G(z,t)}{z - \sigma} =: \ell(t) \neq \infty;$$
(5)

(ii.2) the function ℓ is of class L_{loc}^1 on $[0, +\infty)$. Moreover, if the assertions above hold, then $\ell(t) \in \mathbb{R}$ and

$$\varphi'_{s,t}(\sigma) = \exp \int_{s}^{t} \ell(t') dt' \quad \text{whenever } 0 \leq s \leq t.$$

(6)

Remarks on Theorem 3

Universita' di Roma TOR VERGATA

- For the autonomous case, *i.e.* for one-parameter semigroups, it was proved by Contreras, Díaz-Madrigal & Pommerenke, 2006.
- Analogous characterization of evolution families with the common DW-point was given by Bracci, Contreras & Díaz-Madrigal, 2012.
- ISS Asymmetry in Theorem 3:

(i) σ is a BRFP of all $\varphi_{s,t}$'s $\implies \varphi'_{s,t}(\sigma)$ is AC_{loc} in s and t(ii.1) σ is a BRNP of $G(\cdot, t) \implies$ (ii.2) $\ell(t) := G'(\sigma, t)$ is L^{1}_{loc} for a.e. $t \ge 0$

■ Comparison with the case of the DW-point: [curious] If *σ* is the DW-point of every $φ_{s,t} \neq id_{\mathbb{D}}$, then *ℓ* is of class L_{loc}^d , while for the common BRFP *σ*, we only have $ℓ \in L_{loc}^1$ [$ℓ^+ \in L_{loc}^d$ but $ℓ^- \in L_{loc}^1$].

Definition

A point $\sigma \in \mathbb{T}$ is said to be a *regular contact point* of an evolution family $(\varphi_{s,t})$ if it is a regular contact point of $\varphi_{0,t}$ for all $t \ge 0$,

i.e., for all $t \ge 0$,

$$\begin{aligned} \exists \varphi_{0,t}(\sigma) &:= \angle \lim_{z \to \sigma} \varphi_{0,t}(z) \in \mathbb{T} & \text{and} \\ \varphi_{0,t}'(\sigma) &:= \angle \lim_{z \to \sigma} \frac{\varphi_{0,t}(z) - \varphi_{0,t}(\sigma)}{z - \sigma} \in \mathbb{C}. \end{aligned}$$

We studied regular contact points of evolution families and obtain a partial analogue of Theorem 3.

Theorem 4 (Bracci, Contreras, Díaz-Madrigal, P. Gum.; ArXiv'13)

[Rough formulation]

Let $(\varphi_{s,t})$ be an evolution family, *G* its Herglotz vector field. Suppose $\sigma \in \mathbb{T}$ is a regular contact point of $(\varphi_{s,t})$.

Then for any $t \ge 0$,

$$arphi_{0,t}(\sigma) = \sigma + \int_0^t G(\varphi_{0,s}(\sigma), s) ds$$
 and
 $arphi_{0,t}(\sigma) = \exp \int_0^t G'(\varphi_{0,s}(\sigma), s) ds.$

[in the angular sense]

The End **THANK YOU !!!**

