FIRST JOINT INTERNATIONAL MEETING RSME-SCM-SEMA-SIMAI-UMI Complex Analysis and Operator Theory

> Parametric representation of univalent self-maps

with given boundary fixed points

PAVEL GUMENYUK

Università degli studi di Roma "Tor Vergata"

Bilbao - Spain, July 4, 2014

One of the most classical object of study in *Geometric Function Theory* is the

Class \mathcal{S}

By \mathcal{S} we denote the class of all *holomorphic functions*

 $f: \mathbb{D} \xrightarrow{\text{into}} \mathbb{C}, \quad \mathbb{D} := \{z: |z| < 1\},$

which are

- *univalent* in \mathbb{D} , and
- normalized by the condition f(0) = 0, f'(0) = 1.

The study of S is difficult in many aspects, in particular, because:

- there is no natural linear structure in the class S;
- the class S is even not a convex set in $Hol(\mathbb{D}, \mathbb{C})$.

Classical Parametric Representation

Universita' di Roma TOR VERGATA

Theorem (Parametric Representation) [Loewner, 1923; Kufarev, 1943; Pommerenke, 1965-75; Gutlyanski, 1970]

$$S = \left\{ \mathbb{D} \ni z \mapsto f[p](z) = \lim_{t \to +\infty} e^t \varphi_{0,t}(z) : \right\}$$

 $[0, +\infty) \ni t \mapsto \varphi_{0,t}(z) =: w(t) \text{ solves (1)}$

Loewner – Kufarev ODE $\frac{dw}{dt} = -w(t) p(w(t), t), \quad w(0) = z \in \mathbb{D}, \quad (1)$

where $p : \mathbb{D} \times [0, +\infty) \to \mathbb{C}$ is a classical Herglotz function, i.e.

- $p(z, \cdot)$ is measurable for all $z \in \mathbb{D}$;
- $p(\cdot, t)$ is holomorphic for all $t \ge 0$;
- Re p > 0 and p(0, t) = 1 for all $t \ge 0$.

Representation of $\mathcal{U}_0(\mathbb{D})$

Universita' di Roma TOR VERGATA

Thus the Parametric Representation is the *surjective map* $p \mapsto f[p]$ from the *convex cone* \mathcal{P}_0 of all classical Herglotz functions onto \mathcal{S} .

<u>Notation</u>: \mathcal{U} (D) := { $\varphi \in Hol(\mathbb{D}, \mathbb{D}) : \varphi$ is univalent}, $\mathcal{U}_0(\mathbb{D}) := \{\varphi \in \mathcal{U}(\mathbb{D}) : \varphi(0) = 0, \ \varphi'(0) > 0\}$ — semigroups!

Theorem ("Parametric Representation folklore")

Let $\varphi : \mathbb{D} \to \mathbb{C}$. Then $\varphi \in \mathcal{U}_0(\mathbb{D}) \iff \varphi = \varphi_{0,T}$, where $T := -\log \varphi'(0)$ and $t \mapsto \varphi_{0,T}(T) =: w(t)$ is the solution

where $T := -\log \varphi'(0)$ and $t \mapsto \varphi_{0,t}(z) =: w(t)$ is the solution to

 $dw(t)/dt = -w(t)p(w(t),t), \quad w(0) = z \in \mathbb{D},$

for some classical Herglotz function *p*.

Simple idea to represent $\mathcal{U}(\mathbb{D})$

For $\varphi \in \mathcal{U}(\mathbb{D})$, write $\varphi = L \circ \varphi_0$, where $\varphi_0 \in \mathcal{U}_0(\mathbb{D})$ and $L \in M\"ob(\mathbb{D})$.

Not every simple idea turns out to be productive.

Decomposition $\varphi = L \circ \varphi_0$ does not allow to study infinitesimal structure of subsemigroups in $\mathcal{U}(\mathbb{D}, \mathbb{D})$ and $Hol(\mathbb{D}, \mathbb{D})$.

Examples of semigroups w.r.t. • • •

- Probability generating functions of Galton Watson processes $\mathcal{H}_{\text{gen}} := \left\{ \varphi(z) = \sum_{n=0}^{+\infty} p_n z^n : p_n \ge 0, \sum_{n=0}^{+\infty} p_n = 1 \right\};$
- $\mathfrak{S} \mathcal{H}_{\infty}(\mathbb{H}) := \left\{ \varphi \in \mathsf{Hol}(\mathbb{H}, \mathbb{H}) \colon \mathsf{Im} \, \varphi(z) \ge \mathsf{Im} \, z \right\}, \ \mathbb{H} := \{ z \colon \mathsf{Im} \, z > 0 \}, \\ \mathcal{H}_{\infty}(\mathbb{H}) = \{ \mathsf{id}_{\mathbb{H}} \} \cup \left\{ \varphi \in \mathsf{Hol}(\mathbb{H}, \mathbb{H}) \colon \varphi^{\circ n} \xrightarrow{n \to \infty} \infty \right\};$
- The reciprocal Cauchy transforms of probabil. measures with finite variance and mean zero $\mathcal{H}_{CT}(\mathbb{H}) := \left\{ \varphi(z) = \left(\int_{\mathbb{R}} \frac{d\mu(x)}{z-x} \right)^{-1} : \right\}$

$$\mu \ge 0, \ \mu(\mathbb{R}) = 1, \ \int_{\mathbb{R}} x^2 d\mu(x) < +\infty, \ \int_{\mathbb{R}} x d\mu(x) = 0 \Big\} \subset \mathcal{H}_{\infty}(\mathbb{H});$$

Examples of semigroups — CONTINUED

■ $\mathcal{H}_{SLE}(\mathbb{H}) := \{ \varphi \in Hol(\mathbb{H}, \mathbb{H}) \text{ meromorphic at } \infty :$

$$\varphi(z) = z + \sum_{n=1}^{+\infty} c_n/z^n, c_n \in \mathbb{R} \Big\} \subset \mathcal{H}_{\mathrm{CT}}(\mathbb{H});$$

■ $\mathcal{H}_{0,1}(\mathbb{D}) := \{ \varphi \in Hol(\mathbb{D}, \mathbb{D}) \text{ with } \varphi(0) = 0 \text{ and BRFP at } 1 \};$

 $\texttt{IS} \quad \texttt{`Unival. analogues'': } \mathcal{U}_{gen}, \, \mathcal{U}_{\infty}(\mathbb{H}), \, \mathcal{U}_{CT}(\mathbb{H}), \, \mathcal{U}_{SLE}(\mathbb{H}), \, \mathcal{U}_{0,1}(\mathbb{D}).$

Definition (BRFP)

 $\sigma \in \mathbb{T}$ is a boundary regular fixed point (BRFP) of $\varphi \in Hol(\mathbb{D}, \mathbb{D})$ if

$$\angle \lim_{z \to \sigma} \varphi(z) = \sigma, \quad \varphi'(\sigma) := \angle \lim_{z \to \sigma} \frac{\varphi(z) - \sigma}{z - \sigma} \neq \infty.$$

Infinitesimal structure

Universita' di Roma TOR VERGATA

V. V. Goryainov, 1987, 1992, 1996, 2002(2), 2011: *infinitesimal structure* and *parametric representation* of semigroups in $Hol(\mathbb{D}, \mathbb{D})$

Definition (one-parameter semigroups)

A one-parameter semigroup $(\phi_t) \subset Hol(\mathbb{D}, \mathbb{D})$ is a continuous semigroup homomorphism

$$([0,+\infty),\cdot+\cdot) \ni t \mapsto \phi_t \in (\operatorname{Hol}(\mathbb{D},\mathbb{D}),\cdot\circ\cdot).$$

One-parameter semigroups as semiflows

For any one-parameter semigroup (ϕ_t) there exists $G \in Hol(\mathbb{D}, \mathbb{C})$ s.t.

$$rac{d\phi_t(z)}{dt} = G(\phi_t(z)), \ \phi_0(z) = z, \quad ext{for all } z \in \mathbb{D} ext{ and all } t \geqslant 0.$$
 (4)

<u>Definition</u>: *G* is called the *(infinitesimal)* generator of (ϕ_t) .

Definition (Infinitesimal structure of a semigroup)

By the infinitesimal structure $\mathcal{G}[U]$ of a (sub)semigroup $U \subset Hol(\mathbb{D}, \mathbb{D})$ we mean the set of all infinitesimal generators of one-parameter semigroups $(\phi_t) \subset U$.

Examples

- $\mathfrak{G} := \mathcal{G}[\operatorname{Hol}(\mathbb{D}, \mathbb{D})] = \mathcal{G}[\mathcal{U}(\mathbb{D})] = \left\{ \mathcal{G}(z) = (\tau z)(1 \overline{\tau}z)p(z) : \\ \tau \in \overline{\mathbb{D}}, \operatorname{Re} p \ge 0 \right\} (\operatorname{Berkson} \operatorname{Porta formula})$
- $\mathbb{G}[\mathcal{U}_0(\mathbb{D})] = \left\{ G(z) = -zp(z) \colon \operatorname{Re} p \ge 0, \operatorname{Im} p(0) = 0 \right\}$

 $\mathcal{U}_0(\mathbb{D}) := \left\{ \varphi \in \mathsf{Hol}(\mathbb{D}, \mathbb{D}) \colon \varphi \text{ univalent, } \varphi(0) = 0, \, \varphi'(0) > 0 \right\}$

Analogy with Lie groups

<u>Denote</u>: (ϕ_t^G) the one-param. semigroup generated by $G \in \mathcal{G}$.

Analogue of the Lie exponential map

 $\mathcal{G}[U] \ni G \mapsto \mathsf{Exp}_{\mathrm{Lie}}(G) := \phi_1^G \in U \subset \mathsf{Hol}(\mathbb{D}, \mathbb{D}) \text{ (subsemigroup)}$

☺ Unfortunately, typically $\text{Exp}_{\text{Lie}}(\mathcal{G}[U]) \neq U$, $\neq O_U(\text{id}_{\mathbb{D}})$.

Loewner's idea: Instead of (ϕ_t) 's satisfying the autonomous ODE

$$d\phi_t(z)/dt = G(\phi_t(z)), \ t \ge 0, \ \phi_0(t) = 0,$$
 (6)

consider two-parameter families $(\varphi_{s,t})_{t \ge s \ge 0}$, generated by its *non-autonomous analogue*:

$$d\varphi_{s,t}(z)/dt = G(\varphi_{s,t}(z), t), t \ge s \ge 0, \quad \varphi_{s,s}(z) = z \in \mathbb{D},$$
 (7)

where $G(\cdot, t) \in \mathcal{G}[U]$ for a.e. $t \ge 0$

(plus a "'reasonable assumption" regarding dependence on t).

9/17

• The ODE
$$\frac{d\varphi_{s,t}(z)}{dt} = G(\varphi_{s,t}(z), t), t \ge s \ge 0, \varphi_{s,s}(z) = z,$$
 (7)

is called the general Loewner equation;

• the functions $G : [0, +\infty) \ni t \mapsto G(\cdot, t) \in \mathcal{G}$

are called Herglotz vector fields.

• the families $(\varphi_{s,t})$ are usually referred to as *evolution families*.

Definition

We say that a semigroup $U \subset Hol(\mathbb{D}, \mathbb{D})$ admits the (Loewner-type) Parametric Representation if the union $\mathcal{R}[U]$ of all evolution families $(\varphi_{s,t})$ generated by Herglotz vector fields Gwith $G(\cdot, t) \in \mathcal{G}[U]$ for a.e. $t \ge 0$ coincides with U.

This means that one can reconstruct the semigroup U from its infinitesimal structure $\mathcal{G}[U]$ using the general Loewner ODE (7). *But, a priori,* this depends on the *strict definition* of Herglotz v. f.'s.

✓ V.V. Goryainov, for several *concrete choices* of the semigroup U ⊂ Hol(D, D), gave precise definitions of Herglotz vector fields, *specific for each U*, and established Parametric Representations in each case.
 ✓ Recently, another general approach has been suggested by F. Bracci, M.D. Contreras and S. Díaz-Madrogal, 2008

[J. Reine Angew. Math. 672(2012), 1–37]

Definition (Bracci et al)

A function $G : \mathbb{D} \times [0, +\infty) \to \mathbb{C}$ is a Herglotz vector field if:

- (i) $G(\cdot, t) \in \mathcal{G}$ for a.e. $t \ge 0$;
- (ii) $G(z, \cdot)$ is measurable on $[0, +\infty)$ for every $z \in \mathbb{D}$;
- (iii) for any compact set $K \subset \mathbb{D}$,

 $M_{\mathcal{K}}(t) := \sup_{\mathcal{K}} |G(\cdot, t)|$ is locally integrable on $[0, +\infty)$.

General approach

Universita' di Roma TOR VERGATA

Definition (evolution families — intrinsic definition) Bracci et al

A family $(\varphi_{s,t})_{t \ge s \ge 0} \subset Hol(\mathbb{D}, \mathbb{D})$ is called an *evolution family* if:

- (i) $\varphi_{s,s} = id_{\mathbb{D}}$ for all $s \ge 0$;
- (ii) $\varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}$ whenever $t \ge u \ge s \ge 0$;
- (iii) for any $z \in \mathbb{D}$, the maps $[s, +\infty) \ni t \mapsto \varphi_{s,t}(z)$

are locally absolutely continuous uniformly w.r.t. $s \ge 0$.

Theorem (Bracci et al)

The general Loewner ODE

$$d\varphi_{s,t}(z)/dt = G(\varphi_{s,t}(z), t), \quad t \ge s \ge 0, \quad \varphi_{s,s}(z) = z,$$
(7)

establishes an (essentially) 1-to-1 correspondence between Herglotz vector fields G and evolution families ($\varphi_{s,t}$).

This includes uniqueness and global existence for solutions to (7). Note: (7) is to be understood as a Carathéodory ODE.

Problem statement

<u>Problem</u>: construct a Loewner-type parametric representation for semigroups formed by univalent self-maps with given fixed points. Let \mathcal{F} be a finite set of points on $\mathbb{T} := \partial \mathbb{D}$.

First family of semigroups

 $\mathcal{U}(\mathbb{D},\mathcal{F}) := \left\{ \varphi \in \mathcal{U}(\mathbb{D}) \colon \text{each } \sigma \in \mathcal{F} \text{ is a BRFP of } \varphi \right\}$

"BRFP"="boundary regular fixed point": $\angle \lim_{z \to \sigma} \varphi(z) = \sigma, \varphi'(\sigma) \neq \infty$.

Let $\tau \in \overline{\mathbb{D}} \setminus \mathcal{F}$.

Second family of semigroups

 $\mathcal{U}_{\tau}(\mathbb{D},\mathcal{F}) := \{ \mathsf{id}_{\mathbb{D}} \} \cup \left\{ \varphi \in \mathcal{U}(\mathbb{D},\mathcal{F}) \setminus \{ \mathsf{id}_{\mathbb{D}} \} \colon \tau \text{ is the DW-point of } \varphi \right\}$

"DW-point"="Denjoy-Wolff point":

- for $\tau \in \mathbb{D}$ simply means $\varphi(\tau) = \tau$;
- for $\tau \in \mathbb{T}$ means that $\varphi^{\circ n} \to \tau$ l.u. in \mathbb{D} as $n \to +\infty$.

Motivation

- Loenwer's idea potentially can work in the general setting of an abstract semigroup with "compatible diffeology".
 However, no criteria for such a semigroup to admit a parametric representation is known.
 So it is interesting to study more examples.
- In Geometric Function Theory there has been considerable interest to study self-maps with given BRFP's
 H. Unkelbach, 1938, 1940; C. Cowen, Ch. Pommerenke, 1982;
 Ch. Pommerenke, A. Vasil'ev, 2000; J.M. Anderson, A. Vasil'ev, 2008;
 M. Elin, D. Shoikhet, N. Tarkhanov, 2011;
 V.V. Goryainov [talk at Steklov Math. Inst., Moscow, 26/12/2011];
 A. Frolova, M. Levenshtein, D. Shoikhet, A.Vasil'ev, ArXiv:1309.3074, 2013.
- IF The infinitesimal structure of $\mathcal{U}(\mathbb{D},\mathcal{F})$ and $\mathcal{U}_{\tau}(\mathbb{D},\mathcal{F})$ is well-studied.
- The following result: [see next slide]

Motivation — CONT'ED

Theorem (Bracci, Contreras, Díaz-Madrigal, **P. Gum.**, 2013)

Let $(\varphi_{s,t})$ be an evolution family with Herglotz vector field *G*. Let $\sigma \in \mathbb{T}$. Then **TFAE**:

(i) σ is a BRFP of $\varphi_{s,t}$ for all $t \ge s \ge 0$;

(ii) **G** satisfies:

(ii.1) for a.e. $t \ge 0$ fixed, $G(\cdot, t) \in \mathcal{G}[\mathcal{U}(\mathbb{D}, \{\sigma\})]$ [Contreras, Díaz-

Madrigal, Pommerenke, 2006] $\iff \exists \angle \lim_{z \to \sigma} \frac{G(t, z)}{z - \sigma} =: \lambda(t) \neq \infty;$

(ii.2) $\lambda(t)$ is locally integrable on $[0, +\infty)$.

If the above conditions hold, then $\varphi'_{s,t}(\sigma) = \exp(\int_s^t \lambda(\xi) d\xi)$.

Let *U* be our semigroup, $\mathcal{U}(\mathbb{D},\mathcal{F})$ or $\mathcal{U}_{\tau}(\mathbb{D},\mathcal{F})$. This theorem reduces our problem to checking whether $\mathcal{R}[U] := \bigcup \{\varphi_{s,t}\} \stackrel{?}{=} U,$

where the union is taken over all evolution families $\{\varphi_{s,t}\} \subset U$.

Theorem (**P. Gum.** — work in progress)

Let $\mathcal{F} \subset \mathbb{T}$ be a finite set, $n := \text{Card}(\mathcal{F})$, and $\tau \in \overline{\mathbb{D}}$. The following semigroups U admit

the Loewner-type parametric representation, *i.e.* $\mathcal{R}[U] = U$:

- ✓ $U = U_{\tau}(\mathbb{D}, \mathcal{F})$ for $\tau \in \mathbb{D}$ and n = 1; [Unkelbach and Goryainov]
- ✓ $U = \mathcal{U}_{\tau}(\mathbb{D}, \mathcal{F})$ for $\tau \in \mathbb{T}$ and $n \leq 2$;

✓ $U = \mathcal{U}(\mathbb{D}, \mathcal{F})$ for $n \leq 3$.

H. Unkelbach, 1940: an attempt to give

the Loewner-type parametric representation for $\mathcal{U}_0(\mathbb{D}, \{1\})$; V.V. Goryainov, approx. 2013 (submitted): the complete proofs.

Conjecture [know how to prove]

If $\tau \in \mathbb{D}$, then the semigroup $\mathcal{U}_{\tau}(\mathbb{D}, \mathcal{F})$ admits the Loewner type representation for *any finite set* $\mathcal{F} \subset \mathbb{T}$.

Open problem

Given a finite $\mathcal{F} \subset \mathbb{T}$ with $Card(\mathcal{F}) = n$,

- ¿ Does the semigroups $U_{\tau}(\mathbb{D}, \mathcal{F})$ admits the Loewner type representation for $\tau \in \mathbb{T}$ and *n* > 2?
- **i** Does the semigroups $\mathcal{U}(\mathbb{D},\mathcal{F})$ admits the Loewner type representation for n > 3?

My conjecture is that the correct answer for both questions is NO.

IMUCHAS GRACIAS!