Geometric Characterization of Loewner chains

Geometric and analytic properties of generalized Loewner chains

Pavel Gumenyuk

University of Bergen

International Workshop on Complex Analysis dedicated to the 65th anniversary of Professor Arne Stray, Bergen 2009

Geometric Characterization of Loewner chains

Collaborators

New results in the talk are obtained in collaboration with Prof. Manuel Contreras and Prof. Santiago Díaz-Madrigal form the University of Sevilla, SPAIN.

Geometric Characterization of Loewner chains

Outline

Introduction

- Some History
- Classical Loewner Theory
- Chordal Loewner Evolution

2 New Approach in Loewner's theory

- Authors and Motivation
- Definitions and known results
- New results

3 Geometric Characterization of Loewner chains

- Problem Definition
- Results

Geometric Characterization of Loewner chains

Some History

Parametric Representation

The essence of Loewner's theory is the Parametric Representation Method for univalent functions.

• K. Loewner, 1923,

introduced the Parametric Representation Method to attack the famous Bieberbach conjecture on coefficients of univalent holomorphic functions.

- P. P. Kufarev, 1943, and C. Pommerenke, 1965, contributed to develop the Parametric Representation in its modern form.
- Developments and Applications:
 - Conformal mapping method in the Hele-Shaw problem
 - Schramm Loewner Evolution (SLE)
- V. V. Goryainov, 1987, 1991, 1992, 1996: investigation of infinitesimal structure of semigroups of univalent functions

Geometric Characterization of Loewner chains

Classical Loewner Theory

General scheme of Loewner's Theory

Parametric Representation is a special way to embed a given conformal mapping into a homotopy connecting it to the identity mapping.

The modern Loewner theory can be represented by the following general scheme, which contains 3 notions:

- Loewner chains
- Evolution families
- Herglotz vector fields

There is a *one-to-one correspondence between them*.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Classical Loewner Theory

Classical Loewner Chains

Definition

A family $(f_t)_{0 \le t < +\infty}$ of holomorphic maps of the unit disc $\mathbb{D} := \{z : |z| < 1\}$ is called a *(classical) Loewner chain* if

- each function $f_t : \mathbb{D} \to \mathbb{C}$ is univalent,
- 2 $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ for all $0 \le s < t < +\infty$,
- for each $t \ge 0$,

$$f_t(z) = e^t z + a_2(t) z^2 + \dots$$
 (1)

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Classical Loewner Theory

An example

An example of a (classical) Loewner chain can be constructed as follows.

- Consider a Jordan curve $\Gamma \subset \overline{\mathbb{C}} \setminus \{0\}$ ending at ∞ .
- Choose a parameterization $\gamma : [0, +\infty] \to \Gamma$, $\Gamma(+\infty) = \infty$, and consider the domains $\Omega_t := \mathbb{C} \setminus \gamma([t, +\infty]), t \ge 0.$
- Define *f_t* to be the conformal mapping of D onto Ω_t normalized by *f_t*(0) = 0, *f'_t*(0) > 0.
- Using rescaling in the complex plane and reparameterization of Γ one can assume that f'_t(0) = e^t. Then (f_t) is a (classical) Loewner chain.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Classical Loewner Theory

An example

Remark

This example reveals the case originally considered by Loewner. The boundary of Ω_t is being changed at each moment only locally. Loewner proved that the Loewner chain constructed above satisfies the following PDE

$$\frac{\partial f_t(z)}{\partial t} = z \frac{\partial f_t(z)}{\partial z} \frac{e^{iu(t)} + z}{e^{iu(t)} - z}, \quad t \ge 0,$$
(2)

where $u : [0, +\infty) \to \mathbb{R}$ is a continuous function. The above equation is known as the Loewner PDE.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Classical Loewner Theory

Classical Evolution Families

In classical theory, no independent definition of *Evolution Families* is given.

Definition

The *evolution family* of a Loewner chain (f_t) is the family $(\varphi_{s,t})$, $0 \le s \le t < +\infty$, of holomorphic self-mappings of \mathbb{D} defined by the relation

$$\varphi_{s,t} := f_t^{-1} \circ f_s. \tag{3}$$

Properties:

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Classical Loewner Theory

Herglotz vector fields in classical Loewner's theory

In classical setting, *Herglotz vector fields* have the form

$$G(z,t) := -z p(z,t), \quad z \in \mathbb{D}, \ t \ge 0,$$
(4)

where the function p(z, t), known also as *driving term*, satisfies the following conditions:

p(·, t) is a Carathéodory function for a.e. t ≥ 0,
 i.e., p(·, t) is holomorphic in D and

Re
$$p(z,t) > 0$$
, $p(0,t) = 1$. (5)

2 $p(z, \cdot)$ is measurable on $[0, +\infty)$ for each $z \in \mathbb{D}$.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Classical Loewner Theory

One-to-one correspondense

 For each driving term p(z, t) there exist a unique (classical) Loewner chain (f_t) satisfying the following Loewner – Kufarev PDE

$$\frac{\partial f_t(z)}{\partial t} = z \frac{\partial f_t(z)}{\partial z} \rho(z, t), \quad t \ge 0.$$
(6)

 Moreover, the characteristic equation for (6), the Loewner – Kufarev ODE

$$\frac{dw}{dt} = -w \, \rho(w, t), \quad t \ge s, \quad w|_{t=s} = z, \tag{7}$$

has a unique solution $w = \varphi_{s,t} = f_t^{-1} \circ f_s$.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Classical Loewner Theory

One-to-one correspondense

 If we know the evolution family (φ_{s,t}), then we can reconstruct the Loewner chain (f_t) by means of the formula

$$f_{\mathcal{S}}(z) = \lim_{t \to +\infty} e^t \varphi_{\mathcal{S},t}(z), \quad z \in \mathbb{D}, \ s \ge 0.$$
 (8)

 Every Loewner chain (f_t) is almost everywhere differentiable w.r.t. the parameter t and there exists an essentially unique driving term p(z, t) such that Loewner – Kufarev PDE (6) holds,

$$\frac{\partial f_t(z)}{\partial t} = z \frac{\partial f_t(z)}{\partial z} p(z, t), \quad t \ge 0.$$
(6)

Geometric Characterization of Loewner chains

Chordal Loewner Evolution

Chordal Loewner equation

The classical setting described above is referred to in modern literature as *radial Loewner evolution*. There is also a so-called *"chordal"* variant of the Loewner – Kufarev ODE

$$\frac{dw}{dt} = p(w,t), \quad p(z,t) := \int_{\mathbb{R}} \frac{d\mu_t(x)}{x-z}, \quad \operatorname{Im} z > 0, t \ge 0, \quad (9)$$

where μ_t is a finite Borel measure on \mathbb{R} . For slit mappings, μ_t is supported at one point, and the equation takes the form

$$\frac{dw}{dt} = \frac{1}{\xi(t) - w}.$$
(10)

- P. P. Kufarev, V. V. Sobolev and L. V. Sporysheva, 1968
- N. V. Popova, 1949
- O. Schramm, 2000
- V. V. Goryainov and I. Ba, 1992; R. Bauer, 2005

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Authors and Motivation

New approach: authors and motivation

Authors: F. Bracci, M. D. Contreras and S. Díaz-Madrigal (BCM), 2008

Motivation: to find a general construction which contains, as particular cases:

- radial Loewner evolution,
- chordal Loewner evolution,
- one-parametric semigroups.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Definitions and known results

(Generalized) Evolution Families

Definition

A family $(\varphi_{s,t})$, $0 \le s \le t < +\infty$ of holomorphic self-maps of \mathbb{D} is a *(generalized) evolution family* of order $d \in [1, +\infty]$ if

EF1
$$\varphi_{\boldsymbol{s},\boldsymbol{s}} = \mathrm{id}_{\mathbb{D}},$$

EF2
$$\varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}$$
 for all $0 \le s \le u \le t < +\infty$,

EF3 for any $z \in \mathbb{D}$ and T > 0 there exists $k_{z,T} \in L^d([0, T], \mathbb{R})$ such that

$$|\varphi_{s,u}(z) - \varphi_{s,t}(z)| \leq \int_{u}^{t} k_{z,T}(\xi) d\xi, \quad 0 \leq s \leq u \leq t \leq T.$$
 (11)

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Definitions and known results

(Generalized) Herglotz vector fields

Definition

A *(generalized) Herglotz vector field* of order $d \in [1, +\infty]$ is a function G(z, t) satisfying

VF1 $G(z, \cdot)$ is measurable on $[0, +\infty)$ for each $z \in \mathbb{D}$;

VF2 $G(\cdot, t)$ is holomorphic in \mathbb{D} for a.e. $t \ge 0$;

VF3 For any compact set $K \subset \mathbb{D}$ and T > 0 there is $k_{K,T} \in L^d([0,T],\mathbb{R})$ such that

$$|G(z,t)| \le k_{K,T}(t), \quad z \in K, \ t \in [0,T].$$
 (12)

HVF $G(\cdot, t)$ for a.e. fixed $t \ge 0$ is an infinitesimal generator of a one-parametric semigroup, i.e.,

 $G(z,t) = (\tau_t - z)(1 - z\overline{\tau_t})p_t(z), \ \tau_t \in \overline{\mathbb{D}}, \ \operatorname{Re} p_t(z) \ge 0.$ (13)

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Definitions and known results

For shortness

In what follows, the word "generalized" will be **omitted**.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Definitions and known results

Connection between Evolution Families and Herglotz Vector Fields

- F. Bracci, M. D. Contreras and S. Díaz-Madrigal proved that:
 - For each Herglotz vector field G(z, t) of order d there exists a unique solution w = w(t; s, z) to the initial value problem

$$\frac{dw}{dt} = G(w, t), \quad t \ge s \ge 0, \quad w|_{t=s} = z \in \mathbb{D}.$$
(14)

Moreover the family $(\varphi_{s,t})$ defined by

$$\varphi_{\boldsymbol{s},t}(\boldsymbol{z}) := \boldsymbol{w}(t; \boldsymbol{s}, \boldsymbol{z}), \quad t \ge \boldsymbol{s} \ge \boldsymbol{0}, \ \boldsymbol{z} \in \mathbb{D},$$
(15)

is an *evolution family* of order *d*.

 For each evolution family (φ_{s,t}) there exists an essentially unique Herglotz vector field G(z, t) of the same order such that the solution to (14) is given by

$$w = \varphi_{s,t}(z). \tag{16}$$

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Definitions and known results

Connection between Evolution Families and Herglotz Vector Fields

In other words,

Evolution families are exactly the families of evolution operators for the non-autonomous flows generated by Herglotz vector fields.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

New results

Problem definition

Loewner chains is a missing element in the scheme by F. Bracci, M. D. Contreras and S. Díaz-Madrigal The problem was:

- to formulate an appropriate definition of what a generalized Loewner chain is;
- to study the connection between Loewner chains and evolution families.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

New results

(Generalized) Loewner chains

We introduced

Definition

A family $(f_t)_{0 \le t < +\infty}$ of holomorphic maps of the unit disc will be called a *(generalized) Loewner chain* of order $d \in [1, +\infty]$ if

- **LC1** each function $f_t : \mathbb{D} \to \mathbb{C}$ is univalent,
- **LC2** $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ for all $0 \le s < t < +\infty$,

LC3 for any compact set $K \subset \mathbb{D}$ and all T > 0 there exists $k_{K,T} \in L^d([0, T], \mathbb{R})$ such that

$$|f_{\mathcal{S}}(z) - f_t(z)| \leq \int_{s}^{t} k_{\mathcal{K},T}(\xi) d\xi, \quad z \in \mathcal{K}, \ 0 \leq s \leq t \leq T.$$
 (17)

Geometric Characterization of Loewner chains

New results

$\textbf{Loewner Chains} \rightarrow \textbf{Evolution Families}$

Within the above definition, a Loewner chain generates an evolution family in the same manner as in the classical setting:

Theorem

Let (f_t) be a Loewner chain of order $d \in [1, +\infty]$, then the family $(\varphi_{s,t})$, $t \ge s \ge 0$, defined by the formula

$$\varphi_{\boldsymbol{s},t} := f_t^{-1} \circ f_{\boldsymbol{s}}, \quad t \ge \boldsymbol{s} \ge \boldsymbol{0}, \tag{18}$$

is an evolution family of the same order.

Definition

The evolution family $(\varphi_{s,t})$ given by (18) will be called the *evolution family of a Loewner chain* (f_t) .

Geometric Characterization of Loewner chains

New results

$\textbf{Evolution Families} \rightarrow \textbf{Loewner Chains}$

Theorem

For any evolution family $(\varphi_{s,t})$ there exists a unique Loewner chain (f_t) such that

(i)
$$\varphi_{s,t} := f_t^{-1} \circ f_s, t \ge s \ge 0,$$

(ii)
$$f_0(0) = 0$$
 and $f'_0(0) = 1$,

(iii) $\Omega := \bigcup_{t \ge 0} f_t(\mathbb{D})$ is either a Euclidean disk centered at the origin, or coincides with \mathbb{C} .

Moreover, a family (g_t) is a Loewner chain satisfying (i) if and only if

$$g_t := h \circ f_t, \quad t \ge 0, \tag{19}$$

where $h: \Omega \to \mathbb{C}$ is an arbitrary holomorphic univalent function.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

New results

Evolution Families \rightarrow Loewner Chains

We can distinguish the cases $\Omega = \mathbb{C}$ and $\Omega = D(0, r) \neq \mathbb{C}$. Consider the following function

$$\beta(z) := \lim_{t \to +\infty} \frac{|\varphi'_{0,t}(z)|}{1 - |\varphi_{0,t}(z)|^2} = 0.$$
(20)

The limit (20) exists for all $z \in \mathbb{D}$ and the function β is either zero identically, or never vanishes. We have:

$$\Omega = \mathbb{C} \iff \beta \equiv \mathbf{0},$$

 $r = 1/\beta(\mathbf{0}).$

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Problem Definition

General problem

Another interesting problem is

to characterize geometrically those Loewner chains (f_t) whose evolution families $(\varphi_{s,t})$ satisfy a given normalization and, may be, some additional regularity conditions.

A trivial variant of this general problem is as follows:

Given a collection $\mathcal{D} = \{\Omega_t : t \ge 0\}$ of simply connected domains in \mathbb{C} , does there exists a Loewner chain (f_t) such that

$$\{f_t(\mathbb{D}): t \ge 0\} = \mathcal{D}?$$

The answer is "YES" if and only if D is an *inclusion chain*.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Problem Definition

Inclusion chains

Definition

A one-parametric family $\mathcal{D} = (\Omega_t)_{t \ge 0}$ of simply connected domains in \mathbb{C} is called an *inclusion chain* if

s<t

IC1
$$\Omega_s \subset \Omega_t$$
 whenever $0 \le s \le t < +\infty$;

IC2 Each Ω_s is a connected component of $int(\Omega_s^+)$, where $\Omega_s^+ := \bigcap_{t>s} \Omega_t$;

IC3 Each Ω_t , t > 0, coincides with $\Omega_t^- := \bigcup \Omega_s$.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Problem Definition

Problem definition

Simple fact:

For each inclusion chain (Ω_t) there exists a Loewner chain (f_t) such that (i) $\{f_t : t \ge 0\} = \{\Omega_t : t \ge 0\},$ (ii) $\varphi_{s,t}(0) = 0, \varphi'_{s,t}(0) > 0, t \ge s \ge 0,$ where $\varphi_{s,t} := f_t^{-1} \circ f_s$.

Geometric Characterization of Loewner chains

Problem Definition

Problem definition

The situation with *boundary Denjoy – Wolff point* is more complicated.

Consider the following classes of holomorphic self-maps of \mathbb{D} :

$$\begin{split} \mathcal{C} &:= \big\{ \varphi \in \operatorname{Hol}(\mathbb{D}, \mathbb{D}) : \exists \angle \lim_{z \to 1} \varphi(z) = 1, \ \varphi'(1) \neq \infty \big\}, \\ \mathcal{P} &:= \big\{ \varphi \in \mathcal{C} : \varphi'(1) = 1 \big\}, \\ \mathcal{P}_0 &:= \big\{ \varphi \in \mathcal{P} : \varphi(z) = 1 + (z - 1) - \frac{\ell(\varphi) (z - 1)^3}{4} + \gamma(z), \\ \exists \angle \lim_{z \to 1} \frac{\gamma(z)}{(z - 1)^3} = 0 \big\} \end{split}$$

In the framework of the upper half-plane, the definition of \mathcal{P}_0 takes the form:

$$\Phi(z) = z - \frac{\ell(\Phi)}{z} + \gamma(z), \quad \angle \lim_{z \to \infty} z \gamma(z) = 0.$$
 (21)

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Problem Definition

Chordal Evolution Families

Definition

A *chordal evolution family* is an evolution family $(\varphi_{s,t}) \subset C$ with $\varphi'_{s,t}(1) \leq 1, 0 \leq s \leq t < +\infty$.

Definition

A parabolic chordal evolution family is an evolution family $(\varphi_{s,t}) \subset \mathcal{P}$.

Definition

A Goryainov – Ba evolution family is an evolution family $(\varphi_{s,t}) \subset \mathcal{P}_0$ such that the function $t \mapsto \ell(\varphi_{0,t})$ is absolutely continuous.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Results

Results

Theorem (1)

Let (Ω_t) be an inclusion chain. Suppose there exists a family $(F_t)_{t\geq 0}$ of conformal mappings of \mathbb{D} such that $F_t(\mathbb{D}) = \Omega_t$ and

$$\Phi_t := F_t^{-1} \circ F_0 \tag{22}$$

belongs to the class C for each t > 0. Then there exists a Loewner chain (f_t) such that

(i) the evolution family of (f_t) is a parabolic chordal evolution family and

(ii)
$$\{f_t(\mathbb{D}): t \ge 0\} = \{\Omega_t: t \ge 0\}.$$

Results

Remark

Theorem 1 also holds with

- C replaced by P₀ and
- parabolic chordal evolution families replaced by Goryainov – Ba evolution families.

Definition

An inclusion chain (Ω_t) is said to be *chordally admissible* if it satisfies the conditions of Theorem 1, and *GB-admissible* if it satisfies the conditions of Theorem 1 with C replaced by \mathcal{P}_0 .

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Results

Results

Definition

A C^1 -smooth curve $\gamma : [a, b] \to \overline{\mathbb{C}}$ is said to be *Dini-smooth* is the derivative $d\gamma(t)/dt$ is Dini-continuous.

Theorem

Let (Ω_t) be an inclusion chain and $p \in \partial \Omega_0$. Suppose that the following conditions hold:

- (i) there exists a Dini-smooth closed Jordan curve C ⊂ C
 such that p ∈ C and one of the two connected components
 of C \ C is contained in Ω₀.
- (ii) for each t > 0 there exists a Dini-smooth closed Jordan curve $C_t \subset \overline{\mathbb{C}}$ such that $p \in C_t$, and $\Omega_t \cap C_t = \emptyset$.

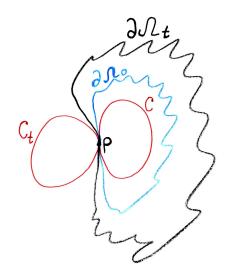
Then the inclusion chain (Ω_t) is chordally admissible.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Results

Results



New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Results

Results

Definition

A C^n -smooth curve $\gamma : [a, b] \to \overline{\mathbb{C}}$ is said to be $C^{n,+0}$ -smooth is the derivative $d^n \gamma(t)/dt^n$ is of class Lip(α) with some $\alpha > 0$.

Theorem

Let (Ω_t) be an inclusion chain and $p \in \partial \Omega_0$. Suppose that the following conditions hold:

- (i) there exists a C^{3,+0}-smooth closed Jordan curve C ⊂ C
 such that p ∈ C and one of the two connected components
 of C \ C is contained in Ω₀.
- (ii) for each t > 0 there exists a $C^{3,+0}$ -smooth closed Jordan curve $C_t \subset \overline{\mathbb{C}}$ such that $p \in C_t$, $\Omega_t \cap C_t = \emptyset$, and C_t has second order contact with C at the point p.

Then the inclusion chain (Ω_t) is GB-admissible.

New Approach in Loewner's theory

Geometric Characterization of Loewner chains

Results

Results

Theorem

Let (Ω_t) be an inclusion chain and P_0 any prime end of the domain Ω_0 . Suppose that P_0 is degenerate, i.e., the impression of P_0 consists of one point p_0 , and for each $t \ge 0$ there exists $\varepsilon > 0$ such that

$$\partial \Omega_t \cap D(\boldsymbol{p}_0, \varepsilon) = \partial \Omega_0 \cap D(\boldsymbol{p}_0, \varepsilon), \tag{23}$$

where $D(p_0, \varepsilon)$ stands for the disk of radius ε centered at p_0 . Then the inclusion chain (Ω_t) is GB-admissible.