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Some History

Parametric Representation

The essence of Loewner’s theory is the Parametric
Representation Method for univalent functions.

K. Loewner, 1923,
introduced the Parametric Representation Method to attack the
famous Bieberbach conjecture on coefficients of univalent
holomorphic functions.

P. P. Kufarev, 1943, and C. Pommerenke, 1965,
contributed to develop the Parametric Representation in its
modern form.
Developments and Applications:

Conformal mapping method in the Hele-Shaw problem
Schramm – Loewner Evolution (SLE)

V. V. Goryainov, 1987, 1991, 1992, 1996: investigation of
infinitesimal structure of semigroups of univalent functions
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Classical Loewner Theory

General scheme of Loewner’s Theory

Parametric Representation is a special way to
embed a given conformal mapping into a homotopy
connecting it to the identity mapping.

The modern Loewner theory can be represented by the
following general scheme, which contains 3 notions:

Loewner chains
Evolution families
Herglotz vector fields

There is a one-to-one correspondence between them.
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Classical Loewner Theory

Classical Loewner Chains

Definition
A family (ft )0≤t<+∞ of holomorphic maps of the unit disc
D := {z : |z| < 1} is called a (classical) Loewner chain if

1 each function ft : D→ C is univalent,
2 fs(D) ⊂ ft (D) for all 0 ≤ s < t < +∞,
3 for each t ≥ 0,

ft (z) = etz + a2(t)z2 + . . . (1)
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Classical Loewner Theory

An example

An example of a (classical) Loewner chain can be constructed
as follows.

Consider a Jordan curve Γ ⊂ C \ {0} ending at∞.
Choose a parameterization γ : [0,+∞]→ Γ,
Γ(+∞) =∞, and consider the domains
Ωt := C \ γ

(
[t ,+∞]

)
, t ≥ 0.

Define ft to be the conformal mapping of D onto Ωt
normalized by ft (0) = 0, f ′t (0) > 0.
Using rescaling in the complex plane and
reparameterization of Γ one can assume that
f ′t (0) = et . Then (ft ) is a (classical) Loewner chain.
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Classical Loewner Theory

An example

Remark
This example reveals the case originally considered by
Loewner. The boundary of Ωt is being changed at each
moment only locally. Loewner proved that the Loewner chain
constructed above satisfies the following PDE

∂ft (z)

∂t
= z

∂ft (z)

∂z
eiu(t) + z
eiu(t) − z

, t ≥ 0, (2)

where u : [0,+∞)→ R is a continuous function. The above
equation is known as the Loewner PDE.
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Classical Loewner Theory

Classical Evolution Families

In classical theory,
no independent definition of Evolution Families is given.

Definition
The evolution family of a Loewner chain (ft ) is the family (ϕs,t ),
0 ≤ s ≤ t < +∞, of holomorphic self-mappings of D defined by
the relation

ϕs,t := f−1
t ◦ fs. (3)

Properties:
1 ϕs,s = idD, for all s ≥ 0,
2 ϕs,t = ϕu,t ◦ ϕs,u for all 0 ≤ s ≤ u ≤ t < +∞,
3 ϕs,t (z) = es−tz + a2(s, t)z2 + . . .
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Classical Loewner Theory

Herglotz vector fields in classical Loewner’s theory

In classical setting,
Herglotz vector fields have the form

G(z, t) := −z p(z, t), z ∈ D, t ≥ 0, (4)

where the function p(z, t), known also as driving term, satisfies
the following conditions:

1 p(·, t) is a Carathéodory function for a.e. t ≥ 0,
i.e., p(·, t) is holomorphic in D and

Re p(z, t) > 0, p(0, t) = 1. (5)

2 p(z, ·) is measurable on [0,+∞) for each z ∈ D.
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Classical Loewner Theory

One-to-one correspondense

For each driving term p(z, t) there exist a unique
(classical) Loewner chain (ft ) satisfying the following
Loewner – Kufarev PDE

∂ft (z)

∂t
= z

∂ft (z)

∂z
p(z, t), t ≥ 0. (6)

Moreover, the characteristic equation for (6), the
Loewner – Kufarev ODE

dw
dt

= −w p(w , t), t ≥ s, w |t=s = z, (7)

has a unique solution w = ϕs,t = f−1
t ◦ fs.
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Classical Loewner Theory

One-to-one correspondense

If we know the evolution family (ϕs,t ), then we can
reconstruct the Loewner chain (ft ) by means of the formula

fs(z) = lim
t→+∞

etϕs,t (z), z ∈ D, s ≥ 0. (8)

Every Loewner chain (ft ) is almost everywhere
differentiable w.r.t. the parameter t and there exists an
essentially unique driving term p(z, t) such that Loewner –
Kufarev PDE (6) holds,

∂ft (z)

∂t
= z

∂ft (z)

∂z
p(z, t), t ≥ 0. (6)
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Chordal Loewner Evolution

Chordal Loewner equation

The classical setting described above is referred to in modern
literature as radial Loewner evolution.There is also a so-called
"chordal" variant of the Loewner – Kufarev ODE

dw
dt

= p(w , t), p(z, t) :=

∫
R

dµt (x)

x − z
, Im z > 0, t ≥ 0, (9)

where µt is a finite Borel measure on R.
For slit mappings, µt is supported at one point, and the
equation takes the form

dw
dt

=
1

ξ(t)− w
. (10)

P. P. Kufarev, V. V. Sobolev and L. V. Sporysheva, 1968
N. V. Popova, 1949
O. Schramm, 2000
V. V. Goryainov and I. Ba, 1992; R. Bauer, 2005
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Authors and Motivation

New approach: authors and motivation

Authors: F. Bracci, M. D. Contreras and S. Díaz-Madrigal
(BCM), 2008

Motivation: to find a general construction which contains,
as particular cases:

radial Loewner evolution,
chordal Loewner evolution,
one-parametric semigroups.
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Definitions and known results

(Generalized) Evolution Families

Definition

A family (ϕs,t ), 0 ≤ s ≤ t < +∞ of holomorphic self-maps of D
is a (generalized) evolution family of order d ∈ [1,+∞] if

EF1 ϕs,s = idD,

EF2 ϕs,t = ϕu,t ◦ ϕs,u for all 0 ≤ s ≤ u ≤ t < +∞,
EF3 for any z ∈ D and T > 0 there exists kz,T ∈ Ld ([0,T ],R)

such that

|ϕs,u(z)− ϕs,t (z)| ≤
∫ t

u
kz,T (ξ)dξ, 0 ≤ s ≤ u ≤ t ≤ T . (11)
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Definitions and known results

(Generalized) Herglotz vector fields

Definition

A (generalized) Herglotz vector field of order d ∈ [1,+∞] is a
function G(z, t) satisfying

VF1 G(z, ·) is measurable on [0,+∞) for each z ∈ D;
VF2 G(·, t) is holomorphic in D for a.e. t ≥ 0;
VF3 For any compact set K ⊂ D and T > 0 there is

kK ,T ∈ Ld ([0,T ],R) such that

|G(z, t)| ≤ kK ,T (t), z ∈ K , t ∈ [0,T ]. (12)

HVF G(·, t) for a.e. fixed t ≥ 0 is an infinitesimal generator of a
one-parametric semigroup, i.e.,

G(z, t) = (τt−z)(1−zτt )pt (z), τt ∈ D, Re pt (z) ≥ 0. (13)
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Definitions and known results

For shortness

In what follows,
the word "generalized" will be omitted.
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Definitions and known results

Connection between Evolution Families and Herglotz Vector Fields

F. Bracci, M. D. Contreras and S. Díaz-Madrigal proved that:

For each Herglotz vector field G(z, t) of order d there exists
a unique solution w = w(t ; s, z) to the initial value problem

dw
dt

= G(w , t), t ≥ s ≥ 0, w |t=s = z ∈ D. (14)

Moreover the family (ϕs,t ) defined by

ϕs,t (z) := w(t ; s, z), t ≥ s ≥ 0, z ∈ D, (15)

is an evolution family of order d .
For each evolution family (ϕs,t ) there exists an essentially
unique Herglotz vector field G(z, t) of the same order such
that the solution to (14) is given by

w = ϕs,t (z). (16)
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Definitions and known results

Connection between Evolution Families and Herglotz Vector Fields

In other words,

Evolution families are exactly the families of evolution
operators for the non-autonomous flows generated by
Herglotz vector fields.
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New results

Problem definition

Loewner chains is a missing element in the scheme by
F. Bracci, M. D. Contreras and S. Díaz-Madrigal
The problem was:

to formulate an appropriate definition of what a generalized
Loewner chain is;
to study the connection between Loewner chains and
evolution families.
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New results

(Generalized) Loewner chains

We introduced

Definition
A family (ft )0≤t<+∞ of holomorphic maps of the unit disc will be
called a (generalized) Loewner chain of order d ∈ [1,+∞] if

LC1 each function ft : D→ C is univalent,
LC2 fs(D) ⊂ ft (D) for all 0 ≤ s < t < +∞,
LC3 for any compact set K ⊂ D and all T > 0 there exists

kK ,T ∈ Ld ([0,T ],R) such that

|fs(z)− ft (z)| ≤
∫ t

s
kK ,T (ξ)dξ, z ∈ K , 0 ≤ s ≤ t ≤ T . (17)
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New results

Loewner Chains→ Evolution Families

Within the above definition, a Loewner chain generates an
evolution family in the same manner as in the classical setting:

Theorem
Let (ft ) be a Loewner chain of order d ∈ [1,+∞], then the
family (ϕs,t ), t ≥ s ≥ 0, defined by the formula

ϕs,t := f−1
t ◦ fs, t ≥ s ≥ 0, (18)

is an evolution family of the same order.

Definition
The evolution family (ϕs,t ) given by (18) will be called the
evolution family of a Loewner chain (ft ).
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New results

Evolution Families→ Loewner Chains

Theorem
For any evolution family (ϕs,t ) there exists a unique Loewner
chain (ft ) such that

(i) ϕs,t := f−1
t ◦ fs, t ≥ s ≥ 0,

(ii) f0(0) = 0 and f ′0(0) = 1,

(iii) Ω :=
⋃
t≥0

ft (D) is either a Euclidean disk centered at the

origin, or coincides with C.
Moreover, a family (gt ) is a Loewner chain satisfying (i) if and
only if

gt := h ◦ ft , t ≥ 0, (19)

where h : Ω→ C is an arbitrary holomorphic univalent function.
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New results

Evolution Families→ Loewner Chains

We can distinguish the cases Ω = C and Ω = D(0, r) 6= C.
Consider the following function

β(z) := lim
t→+∞

|ϕ′0,t (z)|
1− |ϕ0,t (z)|2

= 0. (20)

The limit (20) exists for all z ∈ D and the function β is either
zero identically, or never vanishes. We have:

Ω = C⇐⇒ β ≡ 0,

r = 1/β(0).
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Problem Definition

General problem

Another interesting problem is

to characterize geometrically those Loewner chains (ft )
whose evolution families (ϕs,t ) satisfy a given normalization
and, may be, some additional regularity conditions.

A trivial variant of this general problem is as follows:

Given a collection D = {Ωt : t ≥ 0} of simply connected
domains in C, does there exists a Loewner chain (ft ) such
that {

ft (D) : t ≥ 0
}

= D?

The answer is "YES" if and only if D is an inclusion chain.
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Problem Definition

Inclusion chains

Definition
A one-parametric family D = (Ωt )t≥0 of simply connected
domains in C is called an inclusion chain if
IC1 Ωs ⊂ Ωt whenever 0 ≤ s ≤ t < +∞;
IC2 Each Ωs is a connected component of int(Ω+

s ),
where Ω+

s :=
⋂
t>s

Ωt ;

IC3 Each Ωt , t > 0, coincides with Ω−t :=
⋃
s<t

Ωs.
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Problem Definition

Problem definition

Simple fact:

For each inclusion chain (Ωt ) there exists a Loewner
chain (ft ) such that

(i) {ft : t ≥ 0} = {Ωt : t ≥ 0},
(ii) ϕs,t (0) = 0, ϕ′s,t (0) > 0, t ≥ s ≥ 0, where ϕs,t := f−1

t ◦ fs.
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Problem Definition

Problem definition

The situation with boundary Denjoy – Wolff point is more
complicated.
Consider the following classes of holomorphic self-maps of D:

C :=
{
ϕ ∈ Hol(D,D) : ∃∠ lim

z→1
ϕ(z) = 1, ϕ′(1) 6=∞

}
,

P :=
{
ϕ ∈ C : ϕ′(1) = 1

}
,

P0 :=
{
ϕ ∈ P : ϕ(z) = 1 + (z − 1)− `(ϕ) (z − 1)3

4
+ γ(z),

∃∠ limz→1
γ(z)

(z − 1)3 = 0
}

In the framework of the upper half-plane, the definition of P0
takes the form:

Φ(z) = z − `(Φ)

z
+ γ(z), ∠ lim

z→∞
zγ(z) = 0. (21)
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Problem Definition

Chordal Evolution Families

Definition
A chordal evolution family is an evolution family (ϕs,t ) ⊂ C with
ϕ′s,t (1) ≤ 1, 0 ≤ s ≤ t < +∞.

Definition
A parabolic chordal evolution family is
an evolution family (ϕs,t ) ⊂ P.

Definition
A Goryainov – Ba evolution family is an evolution family
(ϕs,t ) ⊂ P0 such that the function t 7→ `(ϕ0,t ) is absolutely
continuous.
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Results

Results

Theorem (1)
Let (Ωt ) be an inclusion chain. Suppose there exists a family
(Ft )t≥0 of conformal mappings of D such that Ft (D) = Ωt and

Φt := F−1
t ◦ F0 (22)

belongs to the class C for each t > 0. Then there exists a
Loewner chain (ft ) such that

(i) the evolution family of (ft ) is a parabolic chordal evolution
family and

(ii) {ft (D) : t ≥ 0} = {Ωt : t ≥ 0}.
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Results

Remark
Theorem 1 also holds with

C replaced by P0 and
parabolic chordal evolution families replaced by
Goryainov – Ba evolution families.

Definition
An inclusion chain (Ωt ) is said to be chordally admissible
if it satisfies the conditions of Theorem 1, and GB-admissible if
it satisfies the conditions of Theorem 1 with C replaced by P0.
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Results

Results

Definition

A C1-smooth curve γ : [a,b]→ C is said to be Dini-smooth is
the derivative dγ(t)/dt is Dini-continuous.

Theorem

Let (Ωt ) be an inclusion chain and p ∈ ∂Ω0. Suppose that the
following conditions hold:

(i) there exists a Dini-smooth closed Jordan curve C ⊂ C
such that p ∈ C and one of the two connected components
of C \ C is contained in Ω0.

(ii) for each t > 0 there exists a Dini-smooth closed Jordan
curve Ct ⊂ C such that p ∈ Ct , and Ωt ∩ Ct = ∅.

Then the inclusion chain (Ωt ) is chordally admissible.
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Results

Results
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Results

Results

Definition

A Cn-smooth curve γ : [a,b]→ C is said to be Cn,+0-smooth is
the derivative dnγ(t)/dtn is of class Lip(α) with some α > 0.

Theorem

Let (Ωt ) be an inclusion chain and p ∈ ∂Ω0. Suppose that the
following conditions hold:

(i) there exists a C3,+0-smooth closed Jordan curve C ⊂ C
such that p ∈ C and one of the two connected components
of C \ C is contained in Ω0.

(ii) for each t > 0 there exists a C3,+0-smooth closed Jordan
curve Ct ⊂ C such that p ∈ Ct , Ωt ∩ Ct = ∅, and Ct has
second order contact with C at the point p.

Then the inclusion chain (Ωt ) is GB-admissible.
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Results

Results

Theorem

Let (Ωt ) be an inclusion chain and P0 any prime end of the
domain Ω0. Suppose that P0 is degenerate, i.e., the impression
of P0 consists of one point p0, and for each t ≥ 0 there exists
ε > 0 such that

∂Ωt ∩ D(p0, ε) = ∂Ω0 ∩ D(p0, ε), (23)

where D(p0, ε) stands for the disk of radius ε centered at p0.
Then the inclusion chain (Ωt ) is GB-admissible.
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