Spaces of Analytic Functions and Singular Integrals 2016 Parametric representations and quasiconformal extensions by means of modern Loewner Theory

PAVEL GUMENYUK

University of Stavanger, Norway

St. Petersburg - RUSSIA, October 17-20, 2016

Classical Parametric Representation

Every univalent holomorphic function $f : \mathbb{D} := \{z : |z| < 1\} \rightarrow \mathbb{C}, f(0) = 0, f'(0) = 1, \}$

is the initial element, i.e. $f = f_0$,

of some (classical radial) *Loewner chain* $(f_t)_{t \ge 0}$.

Definition: $(f_t)_{t \ge 0}$ is a classical radial Loewner chain if:

(i) for each $t \ge 0$, $f_t : \mathbb{D} \to \mathbb{C}$ is univalent in \mathbb{D} , $f_t(0) = 0$, $f'_t(0) = e^t$; (ii) $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$.

Loewner-Kufarev PDE

$$\frac{\partial f_t}{\partial t} = -G(z,t)\frac{\partial f_t}{\partial z}, \quad t \ge 0, \qquad G(z,t) := -z\,p(z,t),$$

where *p* is a classical Herglotz function.

Introduction

Loewner-Kufarev PDE

$$\frac{\partial f_t}{\partial t} = -G(z,t) \frac{\partial f_t}{\partial z}, \qquad G(z,t) := -z \, p(z,t), \qquad (L-K \, PDE)$$

where *p* is a *classical Herglotz function*, i.e.

- (i) $\forall z \in \mathbb{D}$, p(z, t) is measurable in $t \in [0, +\infty)$;
- (ii) \forall a.e. $t \ge 0$, $p(\cdot, t)$ is holomorphic in \mathbb{D} , $\operatorname{Re} p > 0$, p(0, t) = 1.

(L-K PDE) establish a 1-to-1 relation between class. Herglotz functions p and class. radial Loewner chains (f_t).

Loewner – Kufarev ODE = characteristic eq-n for (L-K PDE)

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi_{s,t}(z)=G(\varphi_{s,t}(z),t),\quad t\ge s\ge 0;\qquad \varphi_{s,s}(z)=z\in\mathbb{D}.$$

 $\varphi_{s,t} = f_t^{-1} \circ f_s : \mathbb{D} \xrightarrow{\text{holo}} \mathbb{D} \text{ because } f_s(\mathbb{D}) \subset f_t(\mathbb{D}), \ t \ge s \ge 0.$

General question

How are the properties of a classical Herglotz function p reflected in properties of the corresponding Loewner chain (f_t) and evolution family $(\varphi_{s,t})_{t \ge s \ge 0}$?

Theorem (J. Becker, 1972) Let $k \in [0, 1)$. SUPPOSE that the class. Herglotz function p satisfies

$$p(\mathbb{D},t) \subset U(k) := \left\{ \zeta \colon \left| \frac{\zeta - 1}{\zeta + 1} \right| \leq k \right\} \subset \subset \mathbb{H} \quad \text{a.e. } t \geq 0.$$

THEN each function in the corresponding Loewner chain (f_t) have a k-q.c. extension to $\overline{\mathbb{C}}$.

NB: Becker also gave an explicit formula for the q.c.-extension of f_t 's.

Generalized Loewner-Kufarev ODE

F. Bracci, M.D. Contreras, and S. Díaz-Madrigal, 2008/2012 $\frac{\mathrm{d}}{\mathrm{d}t}\varphi_{s,t}(z) = G(\varphi_{s,t}(z), t), \quad t \ge s \ge 0; \qquad \varphi_{s,s}(z) = z \in \mathbb{D}, \quad (*)$ where $G(w,t) := (\tau(t) - w)(1 - \overline{\tau(t)}w)p(w,t)$ and: (i) $\tau : [0, +\infty) \to \mathbb{D}$ is measurable; (ii) $\forall z \in \mathbb{D}$, p(w, t) is measurable in $t \in [0, +\infty)$; (iii) \forall a.e. $t \ge 0$, $p(\cdot, t)$ is holomorphic in \mathbb{D} with $\operatorname{Re} p \ge 0$; (iv) $t \mapsto p(0, t)$ is L_{loc}^1 on $[0, +\infty)$.

The function *G* above is referred to as a *Herglotz vector field* and $(\varphi_{s,t})_{t \ge s \ge 0}$ is the associated *evolution family*.

Solve the classical case: $\tau(t) = 0$ and p(0, t) = 1 for a.e. $t \ge 0$.

Universitetet i

Stavange

Generalized Loewner Chains

Universitetet i Stavanger

Definition: (f_t) is a (generalized) *Loewner chain* if: (i) for each $t \ge 0$, $f_t : \mathbb{D} \to \mathbb{C}$ is univalent in \mathbb{D} ; (ii) $f_s(\mathbb{D}) \subset f_t(\mathbb{D})$ whenever $0 \le s \le t$; (iii) $\forall K \subset \subset \mathbb{D}$, $\sup_{z \in K} |f_t(z) - f_s(z)| \le \int_s^t \alpha_K(\xi) d\xi$ for any $s \le t$ and some L^1_{loc} function $\alpha_K : [0, +\infty) \to [0, +\infty)$.

Theorem (M.D. Contreras, S. Díaz-Madrigal, and P. Gum., 2010)

Let *G* be a Herglotz vector field with associated evol'n family $(\varphi_{s,t})$. There exists a unique Loewner chain (f_t) such that

(i) $\varphi_{s,t} = f_t^{-1} \circ f_s$ whenever $t \ge s \ge 0$; (ii) $f_0(0) = 0$, $f'_0(0) = 1$; (iii) $\bigcup_{t\ge 0} f_t(\mathbb{D})$ is \mathbb{C} or a disk centered at 0.

Moreover,

$$\partial f_t / \partial t = -G(z,t) \, \partial f_t / \partial z \,, \quad t \ge 0. \tag{gL-K PDE}$$

We call (f_t) the standard Loewner chain associated with $(\varphi_{s,t})$ and G.

Q.c.-extendibility of gen'd Loewner chains

Let $(\varphi_{s,t})$ be an evol'n family with associated st. Loewner chain (f_t) . If $\varphi_{s,t}$ is *k*-q.c. extendible for any $t \ge s \ge 0$, then f_t is also *k*-q.c. extendible for any $t \ge 0$.

P. Gum., I. Prause, 2016

Becker's condition $p(\mathbb{D}, t) \subset U(k)$ is also sufficient for *k*-q.c. extendibility of evolution families in the general case.

Notation

Let $a : [0, +\infty) \to \mathbb{H} \cup i\mathbb{R}$ be L^1_{loc} and denote by D_t :

- the (closed) hyperbolic disk in ℍ of radius ¹/₂ log ^{1+k}/_{1-k} centered at a(t) when a(t) ∈ ℍ;
- the single point $\{a(t)\}$ when $a(t) \in i\mathbb{R}$.

Remark: If $a \equiv 1$, then $D_t \equiv U(k)$.

Universitete

Stavange

Q.c.-extendibility of gen'd Loewner chains

Theorem (P. Gum., I. Prause, 2016) If $G(w, t) := (\tau(t) - w)(1 - \overline{\tau(t)}w) p(w, t)$ is a Herglotz vector field and $p(\mathbb{D}, t) \subset D_t$ for a.e. $t \ge 0$, then each $\varphi_{s,t}$ in the assoc'd evolution family is *k*-q.c. extendible. [No explicit formula for the q.c.-extensions; we use Slodkowski's λ -Lemma]

SPECIAL CASE $\tau \equiv 1$ (aka "chordal" case): P. Gum., I. Hotta, 2016 [with explicit formula for the extension]

Theorem (P. Gum., I. Hotta, 2016) SUPPOSE that *h* is holomorphic and locally univalent in \mathbb{H} , and $\forall z \in \mathbb{H}$ $\alpha \left(\frac{h(z)}{h'(z)} - z\right) + i\beta \in U(k) = \{\zeta : |\zeta - 1| \le k|\zeta + 1|\}$ (*), where $\alpha > 0$ and $\beta \in \mathbb{R}$ are some constants, THEN *h* has a *k*-q.c. extension to $\overline{\mathbb{C}}$ with a fixed point at ∞ .

Universitete

Stavana

Parametric represent'n of univalent self-maps

 Isometric chains provide characterization of univalent normalized maps *f* : D → C;
 Isometric characterization of

univalent self-maps $\varphi : \mathbb{D} \to \mathbb{D}$:

 $\varphi \in \mathcal{U} := \left\{ \varphi \in \mathsf{Hol}(\mathbb{D}, \mathbb{D}) \colon \varphi \text{ is univalent in } \mathbb{D} \right\}$ *if and only if* φ belongs to some evolution family $(\varphi_{s,t})$.

Question

Given a subclass $\mathcal{U}' \subset \mathcal{U}$, is it possible to characterize $\varphi \in \mathcal{U}'$ in a similar way?

Example: classical case

 $\varphi \in \mathcal{U}_0 := \{\varphi \in \mathcal{U} : \varphi(0) = 0, \varphi'(0) > 0\}$ iff φ belongs to some evolution family $(\varphi_{s,t}) \sim \text{ a class. Herglotz v.f. } G(z,t) = -z p(z,t), \operatorname{Im} p(0,t) = 0.$

Parametric represent'n of univalent self-maps Universitetet i Stavanger

Definition

We say that $\mathcal{U}' \subset \mathcal{U}$ admits a Loewner-type param. representation, if there exists a convex cone $\mathcal{M} \subset \{\text{all Herglotz vector fields}\}$ such that

 $\varphi \in \mathcal{U}' \iff \varphi \in (\varphi_{s,t}) \sim \text{to some } G \in \mathcal{M}.$

NB: \mathcal{U}' must be closed w.r.t. $(\varphi, \psi) \mapsto \varphi \circ \psi$ and $id_{\mathbb{D}} \in \mathcal{U}'$.

Denjoy – Wolff point

Let $\varphi \in Hol(\mathbb{D}, \mathbb{D}) \setminus \{id_{\mathbb{D}}\}$. Then:

Solution $\exists ! \tau \in \mathbb{D} \varphi(\tau) = \tau$, τ is called the D.W.-point of φ

 ${\bf Iso} \ {\rm or} \ \varphi^{\circ n} \to \tau \in \partial \mathbb{D}, \ \varphi(\tau) := \angle \lim_{z \to \tau} \varphi(z) = \tau, \ \varphi'(\tau) := \angle \lim_{z \to \tau} \varphi'(z) \in (0,1].$

Boundary regular fixed points

 $\sigma \in \partial \mathbb{D} \text{ is a } BRFP \text{ of } \varphi \quad \stackrel{\text{def}}{\longleftrightarrow} \quad \left\{ \begin{array}{l} \varphi(\sigma) = \angle \lim_{z \to \sigma} \varphi(z) = \sigma \text{ and} \\ \varphi'(\sigma) = \angle \lim_{z \to \sigma} \varphi'(z) \text{ exists finitely.} \end{array} \right.$

Parametric represent'n of univalent self-maps Universitete Stavanger

Let $F = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$ be a finite subset of $\partial \mathbb{D}$, and let $\tau \in \overline{\mathbb{D}} \setminus F$.

$$oldsymbol{\mathbb{R}}$$
 $\mathcal{U}[F]$:= $\left\{ arphi \in \mathcal{U} : ext{ each } \sigma \in F ext{ is a BRFP of } arphi
ight\}$

$$\blacksquare \quad \mathcal{U}_{\tau}[F] := \left\{ \varphi \in \mathcal{U}[F] \setminus \{ \mathsf{id}_{\mathbb{D}} \} \colon \tau \text{ is the DW-point of } \varphi \right\} \cup \{ \mathsf{id}_{\mathbb{D}} \}$$

Theorem (P. Gum., arXiv:1603.04043)

The following classes admit a Loewner-type parametric represent'n:

- ✓ $\mathcal{U}[F]$ for $n \leq 3$;
- ✓ $\mathcal{U}_{\tau}[F]$ for $\tau \in \partial \mathbb{D}$ and $n \leq 2$;
- ✓ $\mathcal{U}_{\tau}[F]$ for $\tau \in \mathbb{D}$ and any $n \ge 1$. [n = 1: Unkelbach and Goryainov]

The corresponding cones \mathcal{M} of Herglotz vector fields are described.

H. Unkelbach, 1940: an attempt to give the Loewner-type parametric representation for $\mathcal{U}_0[\{1\}]$; V.V. Goryainov, 2015: the complete proof.