Matching univalent functions

PAVEL GUMENYUK

joint research with

Erlend Grong and Alexander Vasil'ev

1. Matching functions and conformal welding

Definition 1. Suppose that:

- f is a conformal mapping of $\mathbb{D} := \{z : |z| < 1\}$ onto a Jordan domain D;
- φ is a conformal mapping of $\mathbb{D}^* := \overline{\mathbb{C}} \setminus \mathbb{D}$ onto a Jordan domain D^* .

Then the functions \underline{f} and φ are said to be *matching* if D and D^* are complementary domains, i. e. $D \cap D^* = \emptyset$ and $\Gamma := \partial D = \partial D^*$.

Using fractional-linear change of variables, we can assume that:

(i) $0 \in D$ and $\infty \in D^*$; (ii) f(0) = f'(1) - 1 = 0; (iii) $\varphi(\infty) = \infty$.

 $\mathcal{S} := \{ f : \mathbb{D} \to \mathbb{C} : f \text{ is analytic, univalent,}$

and subject to normalization (ii)}.

Problem 1. Given $f \in S$ s.t. $f(\mathbb{D})$ is a Jordan domain, find a univalent meromorphic function φ which matches the function f.

A pair of matching functions (f, φ) defines the homeomorphism of the unit circle S^1 ,

$$\gamma = f^{-1} \circ \varphi, \qquad \gamma : S^1 \to S^1. \tag{1}$$

Definition 2. Representation (1) of a homeomorphism $\gamma : S^1 \to S^1$ by means of matching functions is called the *conformal welding*.

Problem 2. Find the conformal welding for a given orientation preserving homeomorphism $\gamma : S^1 \to S^1$, i.e. the pair of matching univalent functions (f, φ) such that $\gamma = f^{-1} \circ \varphi$.

Problem 2 has a unique solution for all homeomorphisms γ that are quasisymmetric, i. e. satisfies

$$\left|\frac{\gamma(e^{i(t+h)}) - \gamma(e^{it})}{\gamma(e^{i(t-h)}) - \gamma(e^{it})}\right| < C_{\gamma} < +\infty, \quad \text{for all } t, h \in \mathbb{R}, \ 0 < |h| < \pi.$$
(2)

A. Pfluger, 1960;

O. Lehto & K.I. Virtanen, 1960.

Also follows from the Ahlfors-Beurling Extension Theorem,

A. Beurling & L. Ahlfors, 1956

Existence and uniqueness of the conformal welding for the constant C_{γ} replaced in right-hand side of (2) with $\rho(h) = O(\log h)$,

O. Lehto, 1970; G.L. Jones, 2000.

Denote by:

- $\operatorname{Lip}_{\alpha}(X, Y)$ the class of all functions $h : X \to Y$ which are Höldercontinuous with exponent α ;
- S the class of all analytic univalent functions $f : \mathbb{D} \to \mathbb{C}$ such that f(0) = f'(0) 1 = 0;
- $S^{qc} := \{ f \in S : f \text{ can be extended to } q. c. \text{ homeomorphism of } \overline{\mathbb{C}} \};$
- $S^{1,\alpha} := \{ f \in S : \partial f(\mathbb{D}) \text{ is a } C^{1,\alpha} \text{-smooth Jordan curve} \}, \ \alpha \in (0,1);$
- $S^{\infty} := \{ f \in S : \partial f(\mathbb{D}) \text{ is a } C^{\infty} \text{-smooth Jordan curve} \};$
- Homeo⁺_{qs}(S^1) the group of all orientation preserving q.s. homeomorphisms $\gamma: S^1 \to S^1$.

Remark 1. The conformal welding establishes one-to-one correspondence between S^{qc} and $\text{Homeo}_{qs}^+(S^1)/\text{Rot}(S^1)$.

• To calculate $\gamma \in \text{Homeo}_{qs}^+(S^1)$ for given $f \in S^{qc}$ one have to solve Problem 1, which is to find the function φ matching f.

• To determine $f \in S^{qc}$ for given $\gamma \in \text{Homeo}_{qs}^+(S^1)$ one have to solve the Beltrami equation

$$\bar{\partial}\tilde{f}(z) = \mu(z)\,\partial\tilde{f}(z), \quad \mu(z) := \begin{cases} \bar{\partial}u(z)/\partial u(z), & \text{if } z \in \mathbb{D}^*, \\ 0, & \text{otherwise,} \end{cases}$$
(3)
$$\partial := \frac{1}{2}\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right), \quad \bar{\partial} := \frac{1}{2}\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right),$$

with the normalization

$$\tilde{f}(\infty) = \infty$$
 and $\tilde{f}(0) = \tilde{f}'(0) - 1 = 0,$ (4)

where u is any q.c. automorphism of \mathbb{D}^* such that $u(\infty) = \infty \ \ \text{and} \ \ u|_{S^1} = \gamma^{-1}.$

Then

$$f := \tilde{f}|_{\mathbb{D}}, \quad \varphi := \tilde{f}|_{\mathbb{D}^*} \circ u^{-1}$$
(5)

are matching functions, $f \in S^{qc}$, and $\gamma = f^{-1} \circ \varphi$.

2. Main results

The following theorem establishes more explicit relation between f, φ , and γ for the smooth case. For fixed $f \in S^{1,\alpha}$ define the operator $I_f: \operatorname{Lip}_{\alpha}(S^1, \mathbb{R}) \to \operatorname{Hol}(\mathbb{D})$ by the formula

$$I_{f}[v](z) := -\frac{1}{2\pi i} \int_{S^{1}} \left(\frac{sf'(s)}{f(s)}\right)^{2} \frac{v(s)}{f(s) - f(z)} \frac{ds}{s}, \quad z \in \mathbb{D}.$$
 (6)

Theorem 1. Suppose $f \in S^{1,\alpha}$ and φ , $\varphi(\infty) = \infty$, are matching functions. Then the kernel of the operator $I_f : \text{Lip}_{\alpha}(S^1, \mathbb{R}) \to \text{Hol}(\mathbb{D})$ is the one-dimensional manifold ker $I_f = \text{span}\{v_0\}$, where

$$v_0(z) := \frac{1}{z} \frac{(\psi \circ f)(z)}{f'(z)(\psi' \circ f)(z)}, \quad \psi := \varphi^{-1}, \quad z \in S^1.$$
(7)

Moreover, the function v_0 is positive on S^1 and satisfies the following condition

$$\int_{0}^{2\pi} \frac{dt}{v_0(e^{it})} = 2\pi.$$
 (8)

Remark 2. Theorem 1 reduces Problem 1 to solution of the equation

$$I_f[v] = 0. (9)$$

Indeed, given f and v_0 , one can calculate $\psi = \varphi^{-1}$ on the boundary of D^* by solving the following differential equation

$$\psi'(u) = H(u)\psi(u), \quad u \in \partial D^*, H := \tilde{H} \circ f^{-1}, \quad \tilde{H}(z) := \frac{1}{zf'(z)v_0(z)} \text{ for } z \in S^1.$$
(10)

Complex Solutions to $I_f[v] = 0$.

Theorem 2. Suppose $f \in S^{1,\alpha}$ and φ , $\varphi(\infty) = \infty$, are matching functions and $\gamma := f^{-1} \circ \varphi$. Then the kernel of the operator $I_f : \operatorname{Lip}_{\alpha}(S^1, \mathbb{C}) \to \operatorname{Hol}(\mathbb{D})$ is the set of all functions v of the form

$$v(z) = v_0(z) \cdot (h \circ \gamma^{-1})(z), \quad z \in S^1,$$
 (11)

where v_0 is defined by (7) and h is an arbitrary holomorphic function in \mathbb{D}^* admitting $\operatorname{Lip}_{\alpha}(S^1, \mathbb{C})$ -extension to S^1 .

3. Operator I_f and Kirillov's manifold

By $\text{Diff}^+(S^1)$ denote the Lie – Fréchet group of all orientation preserving C^{∞} -smooth diffeomorphisms of S^1 .

In 1987 A.A. Kirillov proposed to use the 1-to-1 correspondence between S^{qc} and $Homeo_{qs}^+(S^1)/Rot(S^1)$ established by conformal welding to represent the homogeneous manifold $\mathcal{M} := Diff^+(S^1)/Rot(S^1)$ (Kirillov's manifold) via univalent functions.

The bijection $K : \mathcal{M} \to S^{\infty}$ allows to bring the complex structure from S^{∞} to \mathcal{M} . A.A. Kirillov proved that the (left) action of Diff⁺(S¹) on \mathcal{M} is holomorphic w.r.t. this complex structure.

The infinitesimal version of $K : \mathcal{M} \to S^{\infty}$ is more explicit and expressed by means of $I_f[v]$. Consider the variation of $\gamma \in \text{Diff}^+(S^1)$ given by

$$\gamma_{\varepsilon}(\zeta) := \gamma(\zeta) \delta \gamma(\zeta), \qquad \delta \gamma := \exp i\varepsilon(v \circ \gamma), \tag{12}$$

where $v \in C^{\infty}(S^1, \mathbb{R})$ is regarded as an element of $T_{id}Diff^+(S^1)$.

Variation (12) of γ results in the following variation of $f\in\mathcal{S}^\infty$

$$f_{\varepsilon} := K(\gamma_{\varepsilon}) = f + \delta f,$$

$$\delta f(z) = \frac{\varepsilon}{2\pi} \int_{S^1} \left(\frac{sf'(s)}{f(s)}\right)^2 \frac{f^2(z)v(s)}{f(z) - f(s)} \frac{ds}{s} = i\varepsilon f^2(z)I_f[v](z).$$
(13)

Remark 3. A natural consequence of this is that $I_f[v](z) = 0$ for all $z \in \mathbb{D}$ if and only if the variation of γ produces no variation of $[\gamma] \in \mathcal{M}$ (up to higher order terms), which can be reformulated as follows: the element of $\mathsf{T}_{\gamma}\mathsf{Diff}^+(S^1)$ represented by $v \circ \gamma$ is tangent to the one-dimensional manifold

$$\gamma \circ \operatorname{Rot}(S^1) = [\gamma] \subset \operatorname{Diff}^+(S^1).$$

The latter is equivalent to

$$v \in \operatorname{Ad}_{\gamma}\left(\operatorname{T}_{\operatorname{id}}\operatorname{Rot}(S^{1})\right) = \operatorname{Ad}_{\gamma}\left\{\operatorname{constant} \operatorname{functions} \operatorname{on} S^{1}\right\},$$
 (14)

where $\operatorname{Ad}_{\gamma}$ stands for the differential of $\beta \mapsto \gamma \circ \beta \circ \gamma^{-1}$ at $\beta = \operatorname{id}$.

Elementary calculations show that

$$\mathsf{Ad}_{\gamma} u = \frac{u \circ \gamma^{-1}}{\left(\gamma^{-1}\right)^{\#}}, \quad \beta^{\#} := \left(\pi^{-1} \circ \beta \circ \pi\right)',$$

where $\pi : \mathbb{R} \to S^1$ is the universal covering, $\pi(x) = e^{ix}$.

As a conclusion we get

Proposition 1. The kernel of $I_f : C^{\infty}(S^1, \mathbb{R}) \to Hol(\mathbb{D})$ is a onedimensional manifold and coincides with span $\{1/(\gamma^{-1})^{\#}\}$.

Remark 4. This Proposition is the special case of Theorem 1 for C^{∞} -smooth case. It shows that Problem 2 (of finding conformal welding) is reduced by Theorem 1 to finding solution to

$$I_f[1/(\gamma^{-1})^{\#}] = 0, \tag{15}$$

regarded as equation w.r.t. $f \in S^{\infty}$.

4. An Example of matching functions

Given an integer n > 1, let us consider quadratic differentials

$$\begin{split} \Psi(\zeta)d\zeta^{2} &:= -\frac{d\zeta^{2}}{\zeta^{2}};\\ W(w)dw^{2} &:= -\frac{w^{n-2}dw^{2}}{P(w)}, \quad P(w) := \prod_{k=0}^{n-1} (w - w_{k}), \quad w_{k} := e^{2\pi i k/n};\\ Z(z)dz^{2} &:= -\frac{z^{n-2}dz^{2}}{Q(z)},\\ Q(z) &:= \varkappa \prod_{k=0}^{n-1} \frac{|z_{k}|}{z_{k}} (z_{k} - z)(z - 1/\overline{z_{k}}), \quad z_{k} := re^{2\pi i k/n}, \quad r \in (0, 1). \end{split}$$

where $\varkappa > 0$ is such that

$$\int_{S^1} \sqrt{Z(z)} dz = 2\pi \tag{16}$$

for the appropriately chosen branch of the square root.

The structure of trajectories $W(w)dw^2 > 0$ and $Z(z)dz^2 > 0$.

Let Γ be one of the non-singular trajectories of $W(w)dw^2$, $D \ni 0$ and $D^* \ni \infty$ Jordan domains bounded by Γ .

The corresponding matching w = f(z) and $w = \varphi(\zeta)$ realizing the conformal mappings

 $f: \mathbb{D} \to D,$ f(0) = 0, f'(0) > 0, and $\varphi: \mathbb{D}^* \to D^*,$ $\varphi(\infty) = \infty,$ $\varphi'(\infty) > 0,$

satisfy the following equations (for suitably chosen value of the parameter $r \in (0, 1)$ in quadratic differential $Z(z)dz^2$)

$$W(w)\left(\frac{dw}{dz}\right)^2 = Z(z), \quad W(w)\left(\frac{dw}{d\zeta}\right)^2 = \Psi(\zeta). \tag{17}$$

It follows that

$$v_0(z) = \left(-z^2 Z(z)\right)^{-1/2} = \sqrt{\frac{\varkappa}{r^n}} \prod_{k=0}^{n-1} |z - r e^{ikt/n}|, \quad z \in S^1.$$
(18)

5. Conformal welding for a class of diffeomorphisms of the unit circle

Consider a diffeomorphism $\gamma:S^1\to S^1$ such that the function

$$v_{0} := (\gamma^{-1})^{\#}, \text{ i. e., } v_{0}(e^{it}) = \frac{d\gamma^{-1}(e^{it})/dt}{i\gamma^{-1}(e^{it})},$$
(19)
is a Fourier polynomial $v_{0}(z) := a_{0} + \sum_{k=1}^{n} (a_{k}z^{k} + \overline{a_{k}}z^{-k}).$

One can express this Fourier polynomial in the following form

$$v_0(z) = \varkappa \prod_{k=1}^n \frac{e^{-it_k}}{z} (r_k e^{it_k} - z)(z - e^{it_k}/r_k), \quad r_k \in (0, 1), \quad t_k \in \mathbb{R},$$
 (20)

where the coefficient $\varkappa > 0$ is subject to the conditions

$$v_0 > 0, \qquad \int_0^{2\pi} \frac{dt}{v_0(e^{it})} = 2\pi.$$
 (21)

Proposition 2. The function $f \in S^{\infty}$ that corresponds to γ via conformal welding, satisfies differential equation

$$\frac{w^{n-1}dw}{P(w)} = \frac{z^{n-1}dz}{Q(z)},$$
(22)

where
$$P(w) := \prod_{k=1}^{n} (w - w_k),$$

 $Q(z) := z^n v_0(z) = \varkappa \prod_{k=1}^{n} \frac{|z_k|}{z_k} (z_k - z)(z - 1/\overline{z_k}), \quad z_k := r_k e^{it_k},$

and $w_k := f(z_k)$. Moreover, the vector (w_1, \ldots, w_n) satisfies system

$$\frac{w_k^{n-1}}{P_k(w_k)} = A_k, \quad P_k(w) := \frac{P(w)}{w - w_k}, \quad A_k := \operatorname{Res}_{z=z_k} \frac{z^{n-1}}{Q(z)}, \quad (23)$$
$$\prod_{k=1}^n w_k = (-1)^n Q(0) = \varkappa \prod_{k=1}^n \frac{z_k}{|z_k|}, \quad (24)$$

provided all the roots z_k of Q are simple.

