Matching univalent functions

Pavel Gumenyuk

joint research with
Erlend Grong and Alexander Vasil’ev

1. Matching functions and conformal welding

Definition 1. Suppose that:

- f is a conformal mapping of $\mathbb{D}:=\{z:|z|<1\}$ onto a Jordan domain D;
- φ is a conformal mapping of $\mathbb{D}^{*}:=\overline{\mathbb{C}} \backslash \mathbb{D}$ onto a Jordan domain D^{*}.

Then the functions f and φ are said to be matching if D and D^{*} are complementary domains, i. e. $D \cap D^{*}=\emptyset$ and $\Gamma:=\partial D=\partial D^{*}$.

Using fractional-linear change of variables, we can assume that:
(i) $0 \in D$ and $\infty \in D^{*}$;
(ii) $f(0)=f^{\prime}(1)-1=0$;
(iii) $\varphi(\infty)=\infty$.
$\mathcal{S}:=\{f: \mathbb{D} \rightarrow \mathbb{C}: f$ is analytic, univalent,
and subject to normalization (ii) $\}$.
Problem 1. Given $f \in \mathcal{S}$ s.t. $f(\mathbb{D})$ is a Jordan domain, find a univalent meromorphic function φ which matches the function f.

A pair of matching functions (f, φ) defines the homeomorphism of the unit circle S^{1},

$$
\begin{equation*}
\gamma=f^{-1} \circ \varphi, \quad \gamma: S^{1} \rightarrow S^{1} \tag{1}
\end{equation*}
$$

Definition 2. Representation (1) of a homeomorphism $\gamma: S^{1} \rightarrow S^{1}$ by means of matching functions is called the conformal welding.

Problem 2. Find the conformal welding for a given orientation preserving homeomorphism $\gamma: S^{1} \rightarrow S^{1}$, i.e. the pair of matching univalent functions (f, φ) such that $\gamma=f^{-1} \circ \varphi$.

Problem 2 has a unique solution for all homeomorphisms γ that are quasisymmetric, i. e. satisfies

$$
\begin{equation*}
\left|\frac{\gamma\left(e^{i(t+h)}\right)-\gamma\left(e^{i t}\right)}{\gamma\left(e^{i(t-h)}\right)-\gamma\left(e^{i t}\right)}\right|<C_{\gamma}<+\infty, \quad \text { for all } t, h \in \mathbb{R}, 0<|h|<\pi \tag{2}
\end{equation*}
$$

A. Pfluger, 1960;
O. Lehto \& K.I. Virtanen, 1960.

Also follows from the Ahlfors - Beurling Extension Theorem, A. Beurling \& L. Ahlfors, 1956

Existence and uniqueness of the conformal welding for the constant C_{γ} replaced in right-hand side of (2) with $\rho(h)=O(\log h)$,
O. Lehto, 1970; G.L. Jones, 2000.

Denote by:

- $\operatorname{Lip}_{\alpha}(X, Y)$ the class of all functions $h: X \rightarrow Y$ which are Höldercontinuous with exponent α;
- \mathcal{S} the class of all analytic univalent functions $f: \mathbb{D} \rightarrow \mathbb{C}$ such that $f(0)=f^{\prime}(0)-1=0$;
- $\mathcal{S}^{\text {ac }}:=\{f \in \mathcal{S}: f$ can be extended to q.c. homeomorphism of $\overline{\mathbb{C}}\}$;
- $\mathcal{S}^{1, \alpha}:=\left\{f \in \mathcal{S}: \partial f(\mathbb{D})\right.$ is a $C^{1, \alpha}$-smooth Jordan curve $\}, \alpha \in(0,1)$;
- $\mathcal{S}^{\infty}:=\left\{f \in \mathcal{S}: \partial f(\mathbb{D})\right.$ is a C^{∞}-smooth Jordan curve $\}$;
- Homeo ${ }_{\text {qs }}^{+}\left(S^{1}\right)$ the group of all orientation preserving q.s. homeomorphisms $\gamma: S^{1} \rightarrow S^{1}$.

Remark 1. The conformal welding establishes one-to-one correspondence between $\mathcal{S}^{\text {qc }}$ and $\operatorname{Homeo}_{\mathrm{qS}}^{+}\left(S^{1}\right) / \operatorname{Rot}\left(S^{1}\right)$.

- To calculate $\gamma \in \operatorname{Homeo}_{\mathrm{qs}}^{+}\left(S^{1}\right)$ for given $f \in \mathcal{S}^{\text {वc }}$ one have to solve Problem 1, which is to find the function φ matching f.
- To determine $f \in \mathcal{S}^{\text {वc }}$ for given $\gamma \in \operatorname{Homeo}_{\text {qs }}^{+}\left(S^{1}\right)$ one have to solve the Beltrami equation

$$
\begin{gather*}
\bar{\partial} \tilde{f}(z)=\mu(z) \partial \tilde{f}(z), \quad \mu(z):= \begin{cases}\bar{\partial} u(z) / \partial u(z), & \text { if } z \in \mathbb{D}^{*}, \\
0, & \text { otherwise }\end{cases} \tag{3}\\
\partial:=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \bar{\partial}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
\end{gather*}
$$

with the normalization

$$
\begin{equation*}
\tilde{f}(\infty)=\infty \text { and } \tilde{f}(0)=\tilde{f}^{\prime}(0)-1=0 \tag{4}
\end{equation*}
$$

where u is any q.c. automorphism of \mathbb{D}^{*} such that

$$
u(\infty)=\infty \quad \text { and }\left.\quad u\right|_{S^{1}}=\gamma^{-1}
$$

Then

$$
\begin{equation*}
f:=\left.\tilde{f}\right|_{\mathbb{D}}, \quad \varphi:=\left.\tilde{f}\right|_{\mathbb{D}^{*}} \circ u^{-1} \tag{5}
\end{equation*}
$$

are matching functions, $f \in \mathcal{S}^{\text {वc }}$, and $\gamma=f^{-1} \circ \varphi$.

2. Main results

The following theorem establishes more explicit relation between f, φ, and γ for the smooth case. For fixed $f \in \mathcal{S}^{1, \alpha}$ define the operator $I_{f}: \operatorname{Lip}_{\alpha}\left(S^{1}, \mathbb{R}\right) \rightarrow \operatorname{Hol}(\mathbb{D})$ by the formula

$$
\begin{equation*}
I_{f}[v](z):=-\frac{1}{2 \pi i} \int_{S^{1}}\left(\frac{s f^{\prime}(s)}{f(s)}\right)^{2} \frac{v(s)}{f(s)-f(z)} \frac{d s}{s}, \quad z \in \mathbb{D} . \tag{6}
\end{equation*}
$$

Theorem 1. Suppose $f \in \mathcal{S}^{1, \alpha}$ and $\varphi, \varphi(\infty)=\infty$, are matching functions. Then the kernel of the operator $I_{f}: \operatorname{Lip}_{\alpha}\left(S^{1}, \mathbb{R}\right) \rightarrow \operatorname{Hol}(\mathbb{D})$ is the one-dimensional manifold $\operatorname{ker} I_{f}=\operatorname{span}\left\{v_{0}\right\}$, where

$$
\begin{equation*}
v_{0}(z):=\frac{1}{z} \frac{(\psi \circ f)(z)}{f^{\prime}(z)\left(\psi^{\prime} \circ f\right)(z)}, \quad \psi:=\varphi^{-1}, \quad z \in S^{1} \tag{7}
\end{equation*}
$$

Moreover, the function v_{0} is positive on S^{1} and satisfies the following condition

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d t}{v_{0}\left(e^{i t}\right)}=2 \pi \tag{8}
\end{equation*}
$$

Remark 2. Theorem 1 reduces Problem 1 to solution of the equation

$$
\begin{equation*}
I_{f}[v]=0 \tag{9}
\end{equation*}
$$

Indeed, given f and v_{0}, one can calculate $\psi=\varphi^{-1}$ on the boundary of D^{*} by solving the following differential equation

$$
\begin{align*}
\psi^{\prime}(u)=H(u) \psi(u), & u \in \partial D^{*} \\
H:=\tilde{H} \circ f^{-1}, & \tilde{H}(z):=\frac{1}{z f^{\prime}(z) v_{0}(z)} \quad \text { for } z \in S^{1} \tag{10}
\end{align*}
$$

Complex Solutions to $I_{f}[v]=0$.
Theorem 2. Suppose $f \in \mathcal{S}^{1, \alpha}$ and $\varphi, \varphi(\infty)=\infty$, are matching functions and $\gamma:=f^{-1} \circ \varphi$. Then the kernel of the operator $I_{f}: \operatorname{Lip}_{\alpha}\left(S^{1}, \mathbb{C}\right) \rightarrow \operatorname{Hol}(\mathbb{D})$ is the set of all functions v of the form

$$
\begin{equation*}
v(z)=v_{0}(z) \cdot\left(h \circ \gamma^{-1}\right)(z), \quad z \in S^{1} \tag{11}
\end{equation*}
$$

where v_{0} is defined by (7) and h is an arbitrary holomorphic function in \mathbb{D}^{*} admitting $\operatorname{Lip}_{\alpha}\left(S^{1}, \mathbb{C}\right)$-extension to S^{1}.

3. Operator I_{f} and Kirillov's manifold

By Diff+ $\left(S^{1}\right)$ denote the Lie-Fréchet group of all orientation preserving C^{∞}-smooth diffeomorphisms of S^{1}.

In 1987 A.A. Kirillov proposed to use the 1-to-1 correspondence between $\mathcal{S}^{\text {ac }}$ and $\operatorname{Homeo}_{\mathrm{qS}}^{+}\left(S^{1}\right) / \operatorname{Rot}\left(S^{1}\right)$ established by conformal welding to represent the homogeneous manifold $\mathcal{M}:=\operatorname{Diff}+\left(S^{1}\right) / \operatorname{Rot}\left(S^{1}\right)$ (Kirillov's manifold) via univalent functions.

The bijection $K: \mathcal{M} \rightarrow \mathcal{S}^{\infty}$ allows to bring the complex structure from \mathcal{S}^{∞} to \mathcal{M}. A.A. Kirillov proved that the (left) action of Diff ${ }^{+}\left(S^{1}\right)$ on \mathcal{M} is holomorphic w.r.t. this complex structure.

The infinitesimal version of $K: \mathcal{M} \rightarrow \mathcal{S}^{\infty}$ is more explicit and expressed by means of $I_{f}[v]$. Consider the variation of $\gamma \in \operatorname{Diff}+\left(S^{1}\right)$ given by

$$
\begin{equation*}
\gamma_{\varepsilon}(\zeta):=\gamma(\zeta) \delta \gamma(\zeta), \quad \delta \gamma:=\exp i \varepsilon(v \circ \gamma) \tag{12}
\end{equation*}
$$

where $v \in C^{\infty}\left(S^{1}, \mathbb{R}\right)$ is regarded as an element of $\mathrm{T}_{\text {id }} \operatorname{Diff}+\left(S^{1}\right)$.
Variation (12) of γ results in the following variation of $f \in \mathcal{S}^{\infty}$

$$
\begin{align*}
f_{\varepsilon}:=K\left(\gamma_{\varepsilon}\right) & =f+\delta f, \\
\delta f(z) & =\frac{\varepsilon}{2 \pi} \int_{S^{1}}\left(\frac{s f^{\prime}(s)}{f(s)}\right)^{2} \frac{f^{2}(z) v(s)}{f(z)-f(s)} \frac{d s}{s}=i \varepsilon f^{2}(z) I_{f}[v](z) . \tag{13}
\end{align*}
$$

Remark 3. A natural consequence of this is that $I_{f}[v](z)=0$ for all $z \in \mathbb{D}$ if and only if the variation of γ produces no variation of $[\gamma] \in \mathcal{M}$ (up to higher order terms), which can be reformulated as follows: the element of $T_{\gamma} \operatorname{Diff}^{+}\left(S^{1}\right)$ represented by $v \circ \gamma$ is tangent to the onedimensional manifold

$$
\gamma \circ \operatorname{Rot}\left(S^{1}\right)=[\gamma] \subset \operatorname{Diff}^{+}\left(S^{1}\right) .
$$

The latter is equivalent to

$$
\begin{equation*}
v \in \operatorname{Ad}_{\gamma}\left(\mathrm{T}_{\mathrm{id}} \operatorname{Rot}\left(S^{1}\right)\right)=\operatorname{Ad}_{\gamma}\left\{\text { constant functions on } S^{1}\right\}, \tag{11}
\end{equation*}
$$

where Ad_{γ} stands for the differential of $\beta \mapsto \gamma \circ \beta \circ \gamma^{-1}$ at $\beta=\mathrm{id}$.
Elementary calculations show that

$$
\operatorname{Ad}_{\gamma} u=\frac{u \circ \gamma^{-1}}{\left(\gamma^{-1}\right)^{\#}}, \quad \beta^{\#}:=\left(\pi^{-1} \circ \beta \circ \pi\right)^{\prime}
$$

where $\pi: \mathbb{R} \rightarrow S^{1}$ is the universal covering, $\pi(x)=e^{i x}$.

As a conclusion we get
Proposition 1. The kernel of $I_{f}: C^{\infty}\left(S^{1}, \mathbb{R}\right) \rightarrow \mathrm{Hol}(\mathbb{D})$ is a onedimensional manifold and coincides with span\{1/($\left.\gamma^{-1}\right) \#$.

Remark 4. This Proposition is the special case of Theorem 1 for C^{∞} smooth case. It shows that Problem 2 (of finding conformal welding) is reduced by Theorem 1 to finding solution to

$$
\begin{equation*}
I_{f}\left[1 /\left(\gamma^{-1}\right)^{\#}\right]=0 \tag{15}
\end{equation*}
$$

regarded as equation w.r.t. $f \in \mathcal{S}^{\infty}$.

4. An Example of matching functions

Given an integer $n>1$, let us consider quadratic differentials

$$
\begin{aligned}
\Psi(\zeta) d \zeta^{2} & :=-\frac{d \zeta^{2}}{\zeta^{2}} \\
W(w) d w^{2} & :=-\frac{w^{n-2} d w^{2}}{P(w)}, \quad P(w):=\prod_{k=0}^{n-1}\left(w-w_{k}\right), \quad w_{k}:=e^{2 \pi i k / n} \\
Z(z) d z^{2} & :=-\frac{z^{n-2} d z^{2}}{Q(z)} \\
Q(z) & :=\varkappa \prod_{k=0}^{n-1} \frac{\left|z_{k}\right|}{z_{k}}\left(z_{k}-z\right)\left(z-1 / \overline{z_{k}}\right), \quad z_{k}:=r e^{2 \pi i k / n}, \quad r \in(0,1)
\end{aligned}
$$

where $\varkappa>0$ is such that

$$
\begin{equation*}
\int_{S^{1}} \sqrt{Z(z)} d z=2 \pi \tag{16}
\end{equation*}
$$

for the appropriately chosen branch of the square root.

$$
n=5
$$

The structure of trajectories $W(w) d w^{2}>0$ and $Z(z) d z^{2}>0$.

Let $\left\ulcorner\right.$ be one of the non-singular trajectories of $W(w) d w^{2}$, $D \ni 0$ and $D^{*} \ni \infty$ Jordan domains bounded by Γ.

The corresponding matching $w=f(z)$ and $w=\varphi(\zeta)$ realizing the conformal mappings

$$
\begin{array}{lrrl}
f: \mathbb{D} \rightarrow D, & f(0) & =0, & f^{\prime}(0)
\end{array}>0, \quad \text { and }
$$

satisfy the following equations (for suitably chosen value of the parameter $r \in(0,1)$ in quadratic differential $\left.Z(z) d z^{2}\right)$

$$
\begin{equation*}
W(w)\left(\frac{d w}{d z}\right)^{2}=Z(z), \quad W(w)\left(\frac{d w}{d \zeta}\right)^{2}=\Psi(\zeta) \tag{17}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
v_{0}(z)=\left(-z^{2} Z(z)\right)^{-1 / 2}=\sqrt{\frac{\varkappa}{r^{n}}} \prod_{k=0}^{n-1}\left|z-r e^{i k t / n}\right|, \quad z \in S^{1} \tag{18}
\end{equation*}
$$

5. Conformal welding for a class of diffeomorphisms of the unit circle

Consider a diffeomorphism $\gamma: S^{1} \rightarrow S^{1}$ such that the function

$$
\begin{equation*}
v_{0}:=\left(\gamma^{-1}\right)^{\#}, \quad \text { i. e., } \quad v_{0}\left(e^{i t}\right)=\frac{d \gamma^{-1}\left(e^{i t}\right) / d t}{i \gamma^{-1}\left(e^{i t}\right)} \tag{19}
\end{equation*}
$$

is a Fourier polynomial $v_{0}(z):=a_{0}+\sum_{k=1}^{n}\left(a_{k} z^{k}+\overline{a_{k}} z^{-k}\right)$.

One can express this Fourier polynomial in the following form

$$
\begin{equation*}
v_{0}(z)=\varkappa \prod_{k=1}^{n} \frac{e^{-i t_{k}}}{z}\left(r_{k} e^{i t_{k}}-z\right)\left(z-e^{i t_{k}} / r_{k}\right), \quad r_{k} \in(0,1), \quad t_{k} \in \mathbb{R} \tag{20}
\end{equation*}
$$

where the coefficient $\varkappa>0$ is subject to the conditions

$$
\begin{equation*}
v_{0}>0, \quad \int_{0}^{2 \pi} \frac{d t}{v_{0}\left(e^{i t}\right)}=2 \pi \tag{21}
\end{equation*}
$$

Proposition 2. The function $f \in \mathcal{S}^{\infty}$ that corresponds to γ via conformal welding, satisfies differential equation

$$
\begin{equation*}
\frac{w^{n-1} d w}{P(w)}=\frac{z^{n-1} d z}{Q(z)} \tag{22}
\end{equation*}
$$

where $P(w):=\prod_{k=1}^{n}\left(w-w_{k}\right)$,

$$
Q(z):=z^{n} v_{0}(z)=\varkappa \prod_{k=1}^{n} \frac{\left|z_{k}\right|}{z_{k}}\left(z_{k}-z\right)\left(z-1 / \overline{z_{k}}\right), \quad z_{k}:=r_{k} e^{i t_{k}}
$$

and $w_{k}:=f\left(z_{k}\right)$. Moreover, the vector $\left(w_{1}, \ldots, w_{n}\right)$ satisfies system

$$
\begin{align*}
& \frac{w_{k}^{n-1}}{P_{k}\left(w_{k}\right)}=A_{k}, \quad P_{k}(w):=\frac{P(w)}{w-w_{k}}, \quad A_{k}:={\underset{z}{2}}_{\operatorname{Res}} \frac{z^{n-1}}{Q(z)} \tag{23}\\
& \prod_{k=1}^{n} w_{k}=(-1)^{n} Q(0)=\varkappa \prod_{k=1}^{n} \frac{z_{k}}{\left|z_{k}\right|}, \tag{24}
\end{align*}
$$

provided all the roots z_{k} of Q are simple.

