Doc-course «Complex Analysis and Related Areas» Workshop on Complex and Harmonic Analysis

Boundary behaviour of one-parameter semigroups and evolution families

PAVEL GUMENYUK

Università degli studi di Roma "Tor Vergata"

Andalucía - SPAIN, March 14, 2013

Universita' di Roma TOR VERGATA

U

My talk is devoted to the study of the topological semigroup

$$\begin{split} \mathsf{Hol}(\mathbb{D},\mathbb{D}) &:= \Big\{ \varphi : \mathbb{D} \to \mathbb{D} \, \big| \, \varphi \text{ is holomorphic in } \mathbb{D} \Big\}, \\ \text{ where } \quad \mathbb{D} &:= \{ z \in \mathbb{C} : |z| < 1 \} \quad \text{is the open unit disk.} \end{split}$$

- the semigroup operation in Hol(D, D) is the composition (φ, ψ) → ψ ∘ φ, and
- ► the topology in Hol(D, D) is induced by the locally uniform convergence in D.

For any $\varphi \in Hol(\mathbb{D}, \mathbb{D}) \setminus \{id_{\mathbb{D}}\}\$ there exists *at most* one fixed point in \mathbb{D} [which follows from the Schwarz Lemma].

However, there can be much more so-called *boundary fixed points*.

Definition

Let $\varphi \in Hol(\mathbb{D}, \mathbb{D})$ and $\sigma \in \mathbb{T} := \partial \mathbb{D}$.

• σ is called a *boundary fixed point (BFP)* if the angular limit

$$\varphi(\sigma) := \angle \lim_{z \to \sigma} \varphi(z) \tag{1}$$

exists and $\varphi(\sigma) = \sigma$.

► more generally, if the limit (1) exists and $\varphi(\sigma) \in \mathbb{T}$, then σ is called a *contact point* of φ .

It is known that

If σ is a contact point of $\varphi \in Hol(\mathbb{D}, \mathbb{D})$, then the angular limit

$$\varphi'(\sigma) := \angle \lim_{z \to \sigma} \frac{\varphi(z) - \varphi(\sigma)}{z - \sigma}$$
 (2)

exists, finite or infinite.

It is called the *angular derivative* of φ at σ .

Definition

A contact (or boundary fixed) point σ is said to be *regular*, if the angular derivative $\varphi'(\sigma) \neq \infty$.

In case of a boundary regular fixed point *(BRFP)*, it is known that $\varphi'(\sigma) > 0$.

Denjoy – Wolff Theorem

Let $\varphi \in Hol(\mathbb{D}, \mathbb{D}) \setminus \{id_{\mathbb{D}}\}$. Then there exists *exactly one* (boundary) fixed point $\tau \in \overline{\mathbb{D}}$ whose *multiplier* $\lambda := \varphi'(\tau)$ *does not exceed one* in absolute value: $|\lambda| \leq 1$. Moreover,

EITHER: φ is an *elliptic automorphism*, *i.e.* $\tau \in \mathbb{D}$, $|\lambda| = 1$, and

$$\varphi = \ell^{-1} \circ (z \mapsto \lambda z) \circ \ell, \quad \ell(z) := \frac{z - \tau}{1 - \overline{\tau} z}, \ \ell \in \mathsf{M\"ob}(\mathbb{D}).$$

OR: iterates $\varphi^{\circ n} \longrightarrow \tau$ locally uniformly in \mathbb{D} as $n \to +\infty$.

Definition

The point τ above is called the *Denjoy*-*Wolff point* of φ .

Definition

A one-parameter semigroup in \mathbb{D} is a continuous homomorphism from $(\mathbb{R}_{\geq 0}, +)$ to $(Hol(\mathbb{D}, \mathbb{D}), \circ)$. In other words, a one-parameter semigroup is a family $(\phi_t)_{t\geq 0} \subset Hol(\mathbb{D}, \mathbb{D})$ such that

(i)
$$\phi_0 = id_{\mathbb{D}};$$

(ii)
$$\phi_{t+s} = \phi_t \circ \phi_s = \phi_s \circ \phi_t$$
 for any $t, s \ge 0$;

(iii)
$$\phi_t(z) \to z \text{ as } t \to +0 \text{ for any } z \in \mathbb{D}.$$

One-parameter semigroups appear, e.g. in:

- iteration theory in D as *fractional iterates*;
- operator theory in connection with composition operators;
- embedding problem for time-homogeneous stochastic branching processes.

Universita' di Roma TOR VERGATA

In what follows we will assume that

all one-parameter semigroups (ϕ_t) we consider are *not conjugated to a rotation*, *i.e.*, **not** of the form $\phi_t = \ell^{-1} \circ (z \mapsto e^{i\omega t}z) \circ \ell$ for all $t \ge 0$, where $\omega \in \mathbb{R}$ and $\ell \in \text{M\"ob}(\mathbb{D})$.

Theorem (Contreras, Díaz-Madrigal, Pommerenke, 2004)

Let (ϕ_t) be a one-parameter semigroup in \mathbb{D} . Then:

- $\sigma \in \overline{\mathbb{D}}$ is a (boundary) fixed point of ϕ_t for some t > 0 \iff it is a (boundary) fixed point of ϕ_t for all t > 0;
- $\sigma \in \mathbb{T}$ is a boundary regular fixed point of ϕ_t for some t > 0 \iff it is a boundary regular fixed point of ϕ_t for all t > 0;
- all ϕ_t 's, t > 0, share the same Denjoy Wolff point.

Hence we can define in an obvious way the *DW-point* of a one-parameter semigroup, its *boundary fixed points*, and its *BRFPs*.

Some philosophy...

Not every element of Hol(D, D) can be embedded into a one-parameter semigroup. Elements of one-parameter semigroups enjoy some very specific nice properties.
For example, these functions are *univalent* (=injective).
But especially brightly this shows up in boundary behaviour.

Theorem 1 (Contreras, Díaz-Madrigal, Pommerenke, 2004; P. Gum., 2012)

Let (ϕ_t) be a one-parameter semigroup in \mathbb{D} . Then:

(i) for all $t \ge 0$ and **every** $\sigma \in \mathbb{T}$ there exists the angular limit

 $\phi_t(\sigma) := \angle \lim_{z \to \sigma} \phi_t(z).$

Theorem 1 — continued

 (ii) moreover, for each σ ∈ T and each Stolz angle S at σ the convergence φ_t(z) → φ_t(σ) as S ∋ z → σ is locally uniform in t ∈ [0, +∞);

(iii) the family of functions ("trajectories")

$$\left\{ [0, +\infty) \ni t \mapsto \phi_t(z) : z \in \overline{\mathbb{D}} \right\}$$

is uniformly equicontinuous.

Remark

However, the unrestricted limits

$$\lim_{\mathbb{D}\ni z\to\sigma}\phi_t(z),\quad \sigma\in\mathbb{T},$$

do NOT need to exist. Hence ϕ_t 's can be discontinuous on \mathbb{T} .

Angular and unrestricted limits

Universita' di Roma TOR VERGATA

So unrestricted limits of ϕ_t do not need to exists everywhere on \mathbb{T} . BUT they have to exists *at every boundary <u>fixed point</u>* of (ϕ_t) :

Theorem 2 (Contreras, Díaz-Madrigal, Pommerenke, 2004; P. Gum., 2012)

Let (ϕ_t) be a one-parameter semigroup in \mathbb{D} and $\sigma \in \mathbb{T}$ its boundary fixed point. Then:

(UnrLim) for any $t \ge 0$ there exists the unrestricted limit

 $\lim_{\mathbb{D}\ni z\to\sigma}\phi_t(z) \quad \text{[clearly}=\sigma],$

(EqCont) for each T > 0 the family of mappings

$$\Phi_{\mathcal{T}} := \left\{ \overline{\mathbb{D}} \ni z \mapsto \phi_t(z) \in \overline{\mathbb{D}} : t \in [0, T] \right\}$$

is equicontinuous at the point σ .

U

Some remarks on Theorem 2.

- Solution Contreras, Díaz-Madrigal, and Pommerenke proved (UnrLim) for the case of the DW-point $\tau \in \mathbb{D}$.
- So For the case of $\tau \in \mathbb{T} := \partial \mathbb{D}$:
 - ☺ the method of C. D.-M. P. works

for boundary fixed points $\sigma \in \mathbb{T} \setminus \{\tau\}$,

 \bigcirc but it fails for $\sigma = \tau$.

In all the cases the so-called *linearization model* is used.

We restrict ourselves to the case of the DW-point $\tau \in \mathbb{T} := \partial \mathbb{D}$.

Theorem

Let (ϕ_t) be a one-parameter semigroup in \mathbb{D} with the DW-point $\tau \in \mathbb{T}$. Then there exists an essentially unique univalent holomorphic function $h : \mathbb{D} \to \mathbb{C}$, called the *Kœnigs function* of (ϕ_t) such that

 $h \circ \phi_t = h + t$, $\forall t \ge 0$ (Abel's equation).

- at every boundary fixed point $\sigma \in \mathbb{T} \setminus \{\tau\}$, the Kœnigs function *h* has the *unrestricted limit*;
- at the DW-point, the Kœnigs function *h* does *NOT* need to have the unrestricted limit.

Theorem

For any one-parameter semigroup (ϕ_t) the limit

$$G(z) := \lim_{t \to +0} \frac{\phi_t(z) - z}{t}, \quad z \in \mathbb{D},$$
(3)

exists and *G* is a holomorphic function in \mathbb{D} . Moreover, for each $z \in \mathbb{D}$, the function $[0, \infty) \ni t \mapsto w(t) := \phi_t(z) \in \mathbb{D}$ is the unique solution to the IVP

$$\frac{dw(t)}{dt} = G(w(t)), \quad t \ge 0, \quad w(0) = z.$$
(4)

Definition

The function *G* above is called the *infinitesimal generator* of (ϕ_t) .

There is a non-autonomous analogue of the equation

 $\frac{dw(t)}{dt} = G(w(t)).$

Definition (Bracci, Contreras, Díaz-Madrigal, 2008)

A function $G : \mathbb{D} \times [0, +\infty) \to \mathbb{C}$ is said to be a *Herglotz vector field* of order $d \in [1, +\infty]$, if:

(i) for a.e. t ≥ 0 fixed, the function G(·, t) is an infinitesimal generator of some one-parameter semigroup in D;
(ii) for each z ∈ D fixed, the function G(z, ·) is

measurable on $[0, +\infty)$;

(iii) for each compact set $K \subset \mathbb{D}$ there exists a non-negative function $k_K \in L^d_{loc}([0, +\infty))$ such that

 $\sup_{z\in K} |G(z,t)| \leq k_{K}(t)$ for a.e. $t \ge 0$.

(5)

Theorem (Bracci, Contreras, Díaz-Madrigal, 2008)

Let *G* be a Herglotz vector field of order *d*. Then for any initial data $s \ge 0$, $z \in \mathbb{D}$, the IVP for the *generalized Loewner equation* $\frac{dw(t)}{dt} = G(w(t), t), \quad t \ge s, \quad w(s) = z,$

has a unique solution $w_{z,s} : [s, +\infty) \to \mathbb{D}$.

Evolution family

Fix any $s \ge 0$ and any $t \ge s$. Then the map

 $\mathbb{D} \ni z \mapsto \varphi_{s,t}(z) := w_{z,s}(t) \in \mathbb{D}$

belongs to $\operatorname{Hol}(\mathbb{D}, \mathbb{D})$. The family $(\varphi_{s,t})_{0 \leq s \leq t}$ is called the *evolution family* (of the Herglotz vector field *G*.)

This is a non-autonom. generalization of one-parameter semigroups.

Similar to one-parameter semigroups, evolution families can be defined *without appeal to differential equations*.

Definition (Bracci, Contreras, Díaz-Madrigal, 2008) A family $(\varphi_{s,t})_{0 \le s \le t} \subset Hol(\mathbb{D}, \mathbb{D})$ is an *evolution family* of order $d \in [1, +\infty]$ if EF1 $\varphi_{s,s} = id_{\mathbb{D}}$ for all $s \ge 0$; EF2 $\varphi_{s,t} = \varphi_{u,t} \circ \varphi_{s,u}$ whenever $0 \le s \le u \le t$; EF3 for any $z \in \mathbb{D}$ there exists a non-negative function $k_z \in L^d_{loc}([0, +\infty))$ such that $|\varphi_{s,u}(z)-\varphi_{s,t}(z)| \leq \int_{U}^{t} k_{z}(\xi)d\xi, \quad 0 \leq s \leq u \leq t.$ (6)

The problem

Universita' di Roma TOR VERGATA

U

(7)

A point $\sigma \in \mathbb{T}$ is said to be a *boundary regular fixed point (BRFP*) of $\varphi \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$, if $\exists \varphi(\sigma) := \angle \lim_{z \to \sigma} \varphi(z) = \sigma$, $\exists \varphi'(\sigma) := \angle \lim_{z \to \sigma} \frac{\varphi(z) - \varphi(\sigma)}{z - \sigma} \in \mathbb{C}$.

Theorem A (Contreras, Díaz-Madrigal, Pommerenke, 2006)

Let (ϕ_t) be a one-parameter semigroup in \mathbb{D} , *G* its infinitesimal generator, and $\sigma \in \mathbb{T}$. Then the following conditions are " \iff ":

- (i) the point σ is a BRFP of (ϕ_t) for some (and hence all) t > 0;
- (ii) there exists finite limit $\lambda := \angle \lim_{z \to \sigma} G(z)/(z \sigma)$.

Moreover, if these conditions hold, then $\lambda \in \mathbb{R}$ and $\phi'_t(\sigma) = e^{\lambda t}$.

Problem

Does a generalization of this theorem holds for evolution families?

There has been known the following result in this direction.

Theorem B (Bracci, Contreras, Díaz-Madrigal, 2008)

Let $(\varphi_{s,t})$ be an evolution family of order *d* and *G* its Herglotz vector field. Then the following conditions are " \iff ":

- (i) all $\varphi_{s,t}$'s that are $\neq id_{\mathbb{D}}$ share the same DW-point $\tau_0 \in \mathbb{T}$;
- (ii) for a.e. $t \ge 0$, $G(\cdot, t)$ has a BRNP at τ_0 , *i.e.* there exists finite

$$G'(\tau_0,t) := \angle \lim_{z \to \tau_0} \frac{G(z,t)}{z - \tau_0} =: \lambda(t) \in (-\infty,0];$$
(8)

Moreover, if (i) and (ii) hold, then:

(iii) the function λ is of class L_{loc}^d on $[0, +\infty)$;

(iv)
$$\varphi'_{s,t}(\tau_0) = \exp \int_s^t \lambda(t') dt'$$
, whenever $0 \le s \le t$.

Theorem 3 (Bracci, Contreras, Díaz-Madrigal, P. Gum.)

Let $(\varphi_{s,t})$ be an evolution family, *G* its Herglotz vector field and $\sigma \in \mathbb{T}$. Then the following two assertions are " \iff ":

(i) σ is a BRFP of $\varphi_{s,t}$ for each $s \ge 0$ and $t \ge s$;

(ii) the following two conditions hold:

(ii.1) for a.e. $t \ge 0$, $G(\cdot, t)$ has a BRNP at σ , *i.e.* there exists

$$G'(\sigma, t) := \angle \lim_{z \to \sigma} \frac{G(z, t)}{z - \sigma} =: \lambda(t) \neq \infty;$$
(9)

(ii.2) the function λ is of class L_{loc}^1 on $[0, +\infty)$. Moreover, if the assertions above hold, then $\lambda(t) \in \mathbb{R}$ and

$$\varphi'_{s,t}(\sigma) = \exp \int_{s}^{t} \lambda(t') dt' \quad \text{whenever } 0 \le s \le t.$$
 (10)

■ Asymmetry in Theorem 3:

 σ is a BRFP of all $\varphi_{s,t}$'s $\Rightarrow \qquad \varphi'_{s,t}(\sigma)$ is loc. abs-ly continuous in s and t

 σ is a BRNP of $G(\cdot, t) \Rightarrow t \mapsto G'(\sigma, t)$ is loc. integrable for a.e. $t \ge 0$

Some of the oreginal comparison with Theorem B:

if σ is the DW-point of every $\varphi_{s,t}$, then $t \mapsto G'(\sigma, t)$ is of class L^d_{loc} , while for the common BRFP σ , we only have L^1_{loc} .

Definition

A point $\sigma \in \mathbb{T}$ is said to be a *regular contact point* of an evolution family $(\varphi_{s,t})$ if it is a regular contact point of $\varphi_{0,t}$ for all $t \ge 0$,

i.e., for all $t \ge 0$,

$$\begin{aligned} \exists \varphi_{0,t}(\sigma) &:= \angle \lim_{z \to \sigma} \varphi_{0,t}(z) \in \mathbb{T} & \text{and} \\ \varphi_{0,t}'(\sigma) &:= \angle \lim_{z \to \sigma} \frac{\varphi_{0,t}(z) - \varphi_{0,t}(\sigma)}{z - \sigma} \in \mathbb{C}. \end{aligned}$$

We studied regular contact points of evolution families and obtain a partial analogue of Theorem 3.

Theorem 4 (Bracci, Contreras, Díaz-Madrigal, **P. Gum.**) Let $(\varphi_{s,t})$ be an evolution family, *G* its Herglotz vector field. Suppose $\sigma \in \mathbb{T}$ is a regular contact point of $(\varphi_{s,t})$.

Then for any $t \ge 0$,

$$\varphi_{0,t}(\sigma) = \sigma + \int_0^t G(\varphi_{0,s}(\sigma), s) ds \quad \text{and} \\ \varphi'_{0,t}(\sigma) = \exp \int_0^t G'(\varphi_{0,s}(\sigma), s) ds.$$

THANK YOU !!!

