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My talk is devoted to the study of the topological semigroup

Hol(D,D) :=
{
ϕ : D→ D

∣∣∣ ϕ is holomorphic in D
}
,

where D := {z ∈ C : |z| < 1} is the open unit disk.

I the semigroup operation in Hol(D,D) is
the composition (ϕ,ψ) 7→ ψ ◦ ϕ, and

I the topology in Hol(D,D) is induced
by the locally uniform convergence in D.
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For any ϕ ∈ Hol(D,D) \ {idD} there exists at most one fixed point in D
[which follows from the Schwarz Lemma].

However, there can be much more so-called boundary fixed points.

Definition
Let ϕ ∈ Hol(D,D) and σ ∈ T := ∂D.
I σ is called a boundary fixed point (BFP) if the angular limit

ϕ(σ) := ∠ lím
z→σ

ϕ(z) (1)

exists and ϕ(σ) = σ.
I more generally, if the limit (1) exists and ϕ(σ) ∈ T,

then σ is called a contact point of ϕ.
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It is known that
If σ is a contact point of ϕ ∈ Hol(D,D), then the angular limit

ϕ′(σ) := ∠ lím
z→σ

ϕ(z) − ϕ(σ)

z − σ
(2)

exists, finite or infinite.
It is called the angular derivative of ϕ at σ.

Definition
A contact (or boundary fixed) point σ is said to be regular, if the
angular derivative ϕ′(σ) , ∞.

In case of a boundary regular fixed point (BRFP),
it is known that ϕ′(σ) > 0.
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Denjoy – Wolff Theorem
Let ϕ ∈ Hol(D,D) \ {idD}. Then there exists exactly one (boundary)
fixed point τ ∈ D whose multiplier λ := ϕ′(τ) does not exceed one in
absolute value: |λ| 6 1. Moreover,
EITHER: ϕ is an elliptic automorphism, i.e. τ ∈ D, |λ| = 1, and

ϕ = `−1
◦

(
z 7→ λz

)
◦ `, `(z) :=

z − τ
1 − τz

, ` ∈ Möb(D).

OR: iterates ϕ◦n −→ τ locally uniformly in D as n→ +∞.

Definition
The point τ above is called the Denjoy – Wolff point of ϕ.
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Definition
A one-parameter semigroup in D is a continuous homomorphism
from

(
R>0,+

)
to

(
Hol(D,D), ◦

)
. In other words, a one-parameter

semigroup is a family (φt )t>0 ⊂ Hol(D,D) such that
(i) φ0 = idD;
(ii) φt+s = φt ◦ φs = φs ◦ φt for any t , s > 0;
(iii) φt (z)→ z as t → +0 for any z ∈ D.

One-parameter semigroups appear, e.g. in:
I iteration theory in D as fractional iterates;
I operator theory in connection with composition operators;
I embedding problem for time-homogeneous stochastic branching

processes.
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In what follows we will assume that
all one-parameter semigroups (φt ) we consider are not conjugated to
a rotation, i.e., not of the form φt = `−1

◦ (z 7→ e iωtz) ◦ ` for all t > 0,
where ω ∈ R and ` ∈ Möb(D).

Theorem (Contreras, Díaz-Madrigal, Pommerenke, 2004)
Let (φt ) be a one-parameter semigroup in D. Then:
I σ ∈ D is a (boundary) fixed point of φt for some t > 0
⇐⇒ it is a (boundary) fixed point of φt for all t > 0;

I σ ∈ T is a boundary regular fixed point of φt for some t > 0
⇐⇒ it is a boundary regular fixed point of φt for all t > 0;

I all φt ’s, t > 0, share the same Denjoy – Wolff point.

Hence we can define in an obvious way the DW-point of a
one-parameter semigroup, its boundary fixed points, and its BRFPs.
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Some philosophy...
Not every element of Hol(D,D) can be embedded into a
one-parameter semigroup. Elements of one-parameter semigroups

enjoy some very specific nice properties.
For example, these functions are univalent (=injective).
But especially brightly this shows up in boundary behaviour.

Theorem 1 (Contreras, Díaz-Madrigal, Pommerenke, 2004;
P. Gum., 2012)

Let (φt ) be a one-parameter semigroup in D. Then:
(i) for all t > 0 and every σ ∈ T there exists the angular limit

φt (σ) := ∠ lím
z→σ

φt (z).
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Theorem 1 — continued
(ii) moreover, for each σ ∈ T and each Stolz angle S at σ

the convergence φt (z)→ φt (σ) as S 3 z → σ
is locally uniform in t ∈ [0,+∞);

(iii) the family of functions (“trajectories”){
[0,+∞) 3 t 7→ φt (z) : z ∈ D

}
is uniformly equicontinuous.

Remark
However, the unrestricted limits

lím
D3z→σ

φt (z), σ ∈ T,

do NOT need to exist. Hence φt ’s can be discontinuous on T.
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So unrestricted limits of φt do not need to exists everywhere on T.
BUT they have to exists at every boundary fixed point of (φt ):

Theorem 2 (Contreras, Díaz-Madrigal, Pommerenke, 2004;
P. Gum., 2012)

Let (φt ) be a one-parameter semigroup in D
and σ ∈ T its boundary fixed point. Then:

(UnrLim) for any t > 0 there exists the unrestricted limit

lím
D3z→σ

φt (z) [clearly = σ],

(EqCont) for each T > 0 the family of mappings

ΦT :=
{
D 3 z 7→ φt (z) ∈ D : t ∈ [0,T ]

}
is equicontinuous at the point σ.

One-parameter semigroup 10/23



Universita’ di Roma
TOR VERGATAAngular and unrestricted limits

Some remarks on Theorem 2.
Z Contreras, Díaz-Madrigal, and Pommerenke proved (UnrLim) for

the case of the DW-point τ ∈ D.
Z For the case of τ ∈ T := ∂D:

, the method of C. – D.-M. – P. works
for boundary fixed points σ ∈ T \ {τ},

/ but it fails for σ = τ.
Z In all the cases the so-called linearization model is used.
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We restrict ourselves to the case of the DW-point τ ∈ T := ∂D.

Theorem
Let (φt ) be a one-parameter semigroup in D with the DW-point τ ∈ T.
Then there exists an essentially unique univalent holomorphic
function h : D→ C, called the Kœnigs function of (φt ) such that

h ◦ φt = h + t , ∀ t > 0 (Abel’s equation).

Z at every boundary fixed point σ ∈ T \ {τ}, the Kœnigs function h
has the unrestricted limit;

Z at the DW-point, the Kœnigs function h does NOT need to have
the unrestricted limit.
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Theorem
For any one-parameter semigroup (φt ) the limit

G(z) := lím
t→+0

φt (z) − z
t

, z ∈ D, (3)

exists and G is a holomorphic function in D.
Moreover, for each z ∈ D, the function [0,∞) 3 t 7→ w(t) := φt (z) ∈ D
is the unique solution to the IVP

dw(t)

dt
= G

(
w(t)

)
, t > 0, w(0) = z. (4)

Definition
The function G above is called the infinitesimal generator of (φt ).
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There is a non-autonomous analogue of the equation

dw(t)

dt
= G

(
w(t)

)
.

Definition (Bracci, Contreras, Díaz-Madrigal, 2008)
A function G : D × [0,+∞)→ C is said to be a Herglotz vector field of
order d ∈ [1,+∞], if:
(i) for a.e. t > 0 fixed, the function G(·, t) is

an infinitesimal generator of some one-parameter semigroup in D;
(ii) for each z ∈ D fixed, the function G(z, ·) is

measurable on [0,+∞);
(iii) for each compact set K ⊂ D there exists a non-negative

function kK ∈ Ld
loc

(
[0,+∞)

)
such that
supz∈K |G(z, t)| 6 kK (t) for a.e. t > 0.
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Theorem (Bracci, Contreras, Díaz-Madrigal, 2008)
Let G be a Herglotz vector field of order d. Then for any initial
data s > 0, z ∈ D, the IVP for the generalized Loewner equation

dw(t)

dt
= G

(
w(t), t

)
, t > s, w(s) = z, (5)

has a unique solution wz,s : [s,+∞)→ D.

Evolution family
Fix any s > 0 and any t > s. Then the map

D 3 z 7→ ϕs,t (z) := wz,s(t) ∈ D

belongs to Hol(D,D). The family (ϕs,t )06s6t is called
the evolution family (of the Herglotz vector field G.)

This is a non-autonom. generalization of one-parameter semigroups.
Evolution families 15/23



Universita’ di Roma
TOR VERGATAEvolution families

Similar to one-parameter semigroups, evolution families can be
defined without appeal to differential equations.

Definition (Bracci, Contreras, Díaz-Madrigal, 2008)
A family (ϕs,t )06s6t ⊂ Hol(D,D) is

an evolution family of order d ∈ [1,+∞] if

EF1 ϕs,s = idD for all s > 0;
EF2 ϕs,t = ϕu,t ◦ ϕs,u whenever 0 6 s 6 u 6 t ;
EF3 for any z ∈ D there exists a non-negative function

kz ∈ Ld
loc([0,+∞)) such that

∣∣∣ϕs,u(z) − ϕs,t (z)
∣∣∣ 6 ∫ t

u
kz(ξ)dξ, 0 6 s 6 u 6 t . (6)
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A point σ ∈ T is said to be a boundary regular fixed point (BRFP)
of ϕ ∈ Hol(D,D), if
∃ϕ(σ) := ∠ lím

z→σ
ϕ(z) = σ, ∃ϕ′(σ) := ∠ lím

z→σ

ϕ(z) − ϕ(σ)

z − σ
∈ C.

Theorem A (Contreras, Díaz-Madrigal, Pommerenke, 2006)
Let (φt ) be a one-parameter semigroup in D, G its infinitesimal
generator, and σ ∈ T. Then the following conditions are "⇐⇒":
(i) the point σ is a BRFP of (φt ) for some (and hence all) t > 0;
(ii) λ := ∠ lím

z→σ
G(z)/(z − σ).there exists finite limit (7)

Moreover, if these conditions hold, then λ ∈ R and φ′t (σ) = eλt .

Problem
Does a generalization of this theorem holds for evolution families?
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There has been known the following result in this direction.

Theorem B (Bracci, Contreras, Díaz-Madrigal, 2008)
Let (ϕs,t ) be an evolution family of order d and G its Herglotz vector
field. Then the following conditions are "⇐⇒":
(i) all ϕs,t ’s that are , idD share the same DW-point τ0 ∈ T;
(ii) for a.e. t > 0, G(·, t) has a BRNP at τ0, i.e. there exists finite

G′(τ0, t) := ∠ lím
z→τ0

G(z, t)

z − τ0
=: λ(t) ∈ (−∞,0]; (8)

Moreover, if (i) and (ii) hold, then:
(iii) the function λ is of class Ld

loc on [0,+∞);

(iv) ϕ′s,t (τ0) = exp
∫ t

s
λ(t ′) dt ′, whenever 0 6 s 6 t .
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Theorem 3 (Bracci, Contreras, Díaz-Madrigal, P. Gum.)
Let (ϕs,t ) be an evolution family, G its Herglotz vector field and σ ∈ T.
Then the following two assertions are "⇐⇒":
(i) σ is a BRFP of ϕs,t for each s > 0 and t > s;
(ii) the following two conditions hold:

(ii.1) for a.e. t > 0, G(·, t) has a BRNP at σ, i.e. there exists

G′(σ, t) := ∠ lím
z→σ

G(z, t)

z − σ
=: λ(t) , ∞; (9)

(ii.2) the function λ is of class L1
loc on [0,+∞).

Moreover, if the assertions above hold, then λ(t) ∈ R and

ϕ′s,t (σ) = exp
∫ t

s
λ(t ′) dt ′ whenever 0 6 s 6 t . (10)
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Z Asymmetry in Theorem 3:

σ is a BRFP of all ϕs,t ’s ⇒ ϕ′s,t (σ) is loc. abs-ly continuous in s and t

σ is a BRNP of G(·, t) \⇒ t 7→ G′(σ, t) is loc. integrable
for a.e. t > 0

Z Comparison with Theorem B:

if σ is the DW-point of every ϕs,t , then t 7→ G′(σ, t) is of class Ld
loc,

while for the common BRFP σ, we only have L1
loc.
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Definition
A point σ ∈ T is said to be a regular contact point of an evolution
family (ϕs,t ) if it is a regular contact point of ϕ0,t for all t > 0,

i.e., for all t > 0,

∃ϕ0,t (σ) := ∠ lím
z→σ

ϕ0,t (z) ∈ T and

ϕ′0,t (σ) := ∠ lím
z→σ

ϕ0,t (z) − ϕ0,t (σ)

z − σ
∈ C.

We studied regular contact points of evolution families
and obtain a partial analogue of Theorem 3.
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Theorem 4 (Bracci, Contreras, Díaz-Madrigal, P. Gum.)
Let (ϕs,t ) be an evolution family, G its Herglotz vector field.
Suppose σ ∈ T is a regular contact point of (ϕs,t ).

Then for any t > 0,

ϕ0,t (σ) = σ +

∫ t

0
G

(
ϕ0,s(σ), s

)
ds and

ϕ′0,t (σ) = exp
∫ t

0
G′

(
ϕ0,s(σ), s

)
ds.
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T H A N K Y O U !!!
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