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THE FATOU AND JULIA SETS
OF MULTIVALUED ANALYTIC FUNCTIONS

P. A. Gumenuk UDC 517.538.7

Abstract: We propose a generalization of some problems of complex dynamics which includes the
study of iterations of multivalued functions and compositions of various single-valued functions. We
generalize two classical results concerning the Julia set.
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Introduction

This article is devoted to studying iterations of multivalued functions. This problem for single-valued
functions has been studied in complex dynamics for a long time. We give several traditional definitions.
Suppose that ∆ ∈ {C,C,C∗ = C\{0}} and g : ∆ → ∆ is a nonconstant single-valued analytic function
which is not an automorphism of ∆. Denote by N the set of positive integers.

Definition 1. The nth iteration of g, n ∈ N, is the function gn defined recurrently by the relations
g1 = g and gn = g ◦ gn−1.

Definition 2. A point z0 ∈ ∆ is a periodic point of g if ∃n ∈ N gn(z0) = z0. If, in addition,
|(gn)′(z0)| > 1 then z0 is called a repelling periodic point.

Definition 3. The Fatou set F (g) of g is the set of all points z ∈ ∆ at which the sequence {gn}n∈N
is a normal family. The complement of the Fatou set is called the Julia set J (g) = C\F (g).

For details we refer to the monographs [1, 2] on complex dynamics.
We give two classical results concerning the Julia set (see, for example, the survey [3, Theorems 26

and 33] and [1, 2]).

Theorem A. The Julia set has no isolated points and is nonempty.

Theorem B. The Julia set coincides with the closure of the set of all repelling periodic points.

Introduce some notations. Let T be a domain of the complex sphere C. Denote by S (T ) the set of
all simply connected domains D ⊂ T . Denote the set of all single-valued analytic functions f : D → U
by H (D,U) and put H (D) := H (D,C). Denote the closure of a set E ⊂ C by E. Also, put notation
B(z, r) = Rz({ξ : |ξ| < r}), z ∈ C, where Rz(ξ) = (ξ + z)/(1− ξz̄), z 6= ∞, and R∞(ξ) = 1/ξ. Note that
the exterior of B(z, r) coincides with B(−1/z̄, 1/r).

We recall some assertions of the theory of normal families which are important for complex dynamics
(see, for example, [4, pp. 67–75]).

Theorem C. For a family F ⊂ H (D) to be normal in D, it is necessary and sufficient that F is
normal at each point z ∈ D.
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Theorem D (Montel’s criterion). For a family F ⊂ H (D) of functions to be normal in D, it is
sufficient that

Card
(
C\

⋃
h∈F

h(D)
)
> 2.

Remark 1. We can restate Montel’s criterion in more general form as follows: if there are pairwise
disjoint compact sets Kj ⊂ C, j = 1, 2, 3, such that Kj 6⊂ h(D) for any j = 1, 2, 3 and h ∈ F , then the
family F is normal in D.

As shows the example of the multivalued function f(z) = e
√

z, iterations are defined nonuniquely:
f2(z) = exp(e

√
z/2) or f2(z) = exp(−e

√
z/2) depending on the choice of the branch of the root. This

suggests that we have to extend the class of objects to be iterated. To this end, we introduce the
following notion, called an analytic relation in this paper:

Definition 4. A set f ⊂ {(D,ϕ) : D ∈ S (T ), ϕ ∈ H (D)} is an analytic relation in a domain
T ⊂ C if the following conditions are satisfied:

(a) pr1 f = {D : ∃ϕ (D,ϕ) ∈ f} = S (T );
(b) for arbitrary D1, D2 ∈ S (T ), ϕ1, (D1, ϕ1) ∈ f , and every curve γ ⊂ T joining points z1 and z2,

z1 ∈ D1, z2 ∈ D2, there is a continuation ϕ2 of ϕ1 along γ on D2 such that (D2, ϕ2) ∈ f .
A function ϕ such that (D,ϕ) ∈ f is called a branch of f in D. By the image of a point z ∈ T

under f we mean ϕ(z), where ϕ is one of the branches of f in some simply connected neighborhood
B(z, ε) ⊂ T . By the image of a set A ⊂ T we mean the union

f(A) =
⋃

(D,ϕ)∈f

ϕ(A ∩D).

If f(T ) ⊂ U for some set U then we write f : T → U .

Although complex dynamics deals among other cases with the case in which a function takes values
corresponding to its singular points (for example, for transcendental meromorphic functions), in this arti-
cle we suppose that all values lie in a domain containing no singular points; i.e., f : T → T . Moreover, we
adopt the natural assumption that the analytic relations under consideration have no constant branches.

Definition 5. Let T ⊂ C be a domain and let f : T → T be an analytic relation without constant
branches. Suppose that sequences {Dn ∈ S (T )}+∞

n=0, {zn ∈ Dn}+∞
n=0, and {ϕn ∈ H (Dn)}+∞

n=0 are such
that (Dn, ϕn) ∈ f and zn+1 = ϕn(zn), n = 0, 1, . . . . Then, for every k ∈ N, there is a neighborhood Uk

of z0 in which the composite function Fk = ϕk−1 ◦ · · · ◦ ϕ0 is well defined. According to the definition of
an analytic relation and the monodromy theorem (see, for example, [5, p. 127]), we can extend Fk to the
whole domain D0. The sequence {Fk}k∈N is called an iteration sequence of f at z0 over D0.

Remark 2. The definition of the iteration sequence Fk is independent of the choice of D0 for a given
z0 in the sense that for each G ∈ S (T ), z0 ∈ G, the functions Fk, extended from D0 to G through the
connected component of the intersection D0 ∩G containing z0, constitute an iteration sequence over G.

On the other hand, for a given D0 this definition is invariant under the choice of z0 ∈ D0.

Definition 6. Let I (D), D ∈ S (T ), be the set of all iteration sequences of an analytic relation
f : T → T over D. Then the nth iteration of f is the analytic relation fn whose set of branches in D is
{Fn : {Fk}k∈N ∈ I (D)} for each D ∈ S (T ).

Remark 3. Let F be some family of single-valued analytic functions g : T → T . The set f =
A(F ) := {(D, g) : D ∈ S (T ), g ∈ F} is an analytic relation in T ; moreover, fn = A(Fn), where

Fn = {gn ◦ · · · ◦ g1 : gk ∈ F, k = 1, . . . , n},

and the iteration sequences are exactly the sequences of the form Fn = gn ◦ · · · ◦ g1, where {gk}k∈N is
an arbitrary sequence of functions in F .
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Thus, studying infinite compositions of analytic functions taking a domain into itself is a particular
instance of studying iterations of analytic relations.

In view of Remark 2, we can henceforth omit the indication of the domain over which an iteration
sequence is defined. We denote by Φ(f, z0) the set of all terms of all iteration sequences of an analytic
relation f at z0.

Definition 7. We say that the iterations of an analytic relation f : T → T are normal at z0 ∈ T if
there is a neighborhood of z0 in which each iteration sequence of f at z0 is a normal family. In this case
we also say that z0 is a normal iteration point of f .

Remark 4. The notion of normality can be defined for an arbitrary family F of analytic relations.
Say that such an F is normal at z0 if there is a simply connected domain D 3 z0 in which the family of
all branches of all analytic relations h ∈ F in D is normal.

According to this definition, normality of the family of all iterations {fn : n ∈ N} of an analytic
relation f : T → T at a point z0 ∈ T means normality of the family Φ(f, z0) at z0.

The following proposition shows that Definition 7 and the definition of Remark 4 are equivalent
under rather general additional conditions.

Proposition 1. Let f : ∆ → ∆, ∆ ∈ {C,C,C∗}, be an analytic relation. In the case of ∆ = C we
also require that f has a branch which is not a linear-fractional function. If z0 ∈ T is a normal iteration
point of f then the family Φ(f, z0) is normal at z0.

Remark 5. In the case when f is a single-valued function the set of all normal iteration points of f
is the Fatou set and its complement is the Julia set. Therefore, it is worth giving the following

Definition 8. Let f : T → T , T ∈ {C,C,C∗}, be an analytic relation. The Fatou set F (f) of f is
the set of all normal iteration points of f . The set J (f) = T\F (f) is called the Julia set.

Remark 6. The definition of a normal point implies that the Fatou set is open.
The following proposition is an analog of Theorem A for analytic relations:

Proposition 2. If Card(C\F (f)) > 2 then J (f) has no isolated points.

Definition 9. A point z0 ∈ T is a periodic point of an analytic relation f : T → T if there is
g ∈ Φ(f, z0) such that g(z0) = z0. A point z0 is a repelling periodic point if there is g ∈ Φ(f, z0) such
that g(z0) = z0 and |g′(z0)| > 1.

The following theorem generalizes Theorem B:

Theorem 1. Let f : T → T , T ∈ {C,C,C∗}, be an analytic relation. In the case of T = C we also
require that f has no branches that are linear-fractional functions. Denote by R the set of all repelling
periodic points of f . Then J (f) coincides with R.

Basic Lemmas

Lemma 1. Let h be a nonconstant single-valued analytic function in some neighborhood of a
point z0. For a family of single-valued analytic functions Ψ to be normal at h(z0), it is necessary
and sufficient that the family Ψ ◦ h := {g ◦ h : g ∈ Ψ} be normal at z0.

Proof. Necessity is clear. Prove sufficiency. Since Ψ ◦ h is normal at z0, there is ε > 0 such that
each sequence of functions in the family Ψ ◦ h has a subsequence uniformly convergent in W = B(z0, ε).

By Montel’s criterion, it suffices to demonstrate that there is a neighborhood U of w0 = h(z0) such
that g(U) ⊂ B(g(w0), 2) for all g ∈ Ψ. Suppose the contrary. Consider a sequence {gn ∈ Ψ}n∈N for
which gn(Un) 6⊂ B(gn(w0), 2), Un = h(B(z0, ε/n)), n ∈ N. Extracting from the sequence vn = gn ◦ h
a subsequence that converges uniformly in W , we arrive at a contradiction, since for the limit function v
we have v(B(z0, ε/n)) ⊂ B(v(z0), 1) at a sufficiently large n, whence there is n for which vn(B(z0, ε/n)) ⊂
B(vn(z0), 2).
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The following lemma is an immediate consequence of Lemma 1:

Lemma 2. Let f : T → T be an analytic relation. For a point z to belong to F (f), it is necessary
that all images of z under f belong to F (f).

Lemma 3. Let D ⊂ C∗ be a domain and Φ ⊂ H (D,C∗). If a point z0 ∈ D is exterior to the set
P (Φ) = {ξ ∈ D : ∃ g ∈ Φ g(ξ) = ξ} then Φ is normal at z0.

Proof. By hypothesis, there is a domain U ⊂ D, z0 ∈ U , such that U ∩ P (Φ) = ∅. The family
Ξ = {g(z)/z : g ∈ Φ} is normal in U by Montel’s criterion, since any h ∈ Ξ does not take values 0, ∞,
and 1 in U . Hence, Φ is normal in U . The lemma is proven.

Lemma 4. Let f : C∗ → C∗ be an analytic relation. Then, for each z0 ∈ F (f), the family Φ(f, z0)
is normal at z0.

Proof. Let W ⊂ C∗, z0 ∈ W , be a simply connected domain. Take a domain U 3 z0 such that
U ⊂W . Put

Ξ = {g ∈ Φ(f, z0) | U ⊂ g(U)}.
Suppose that Φ(f, z0) is not a normal family in U . Then Ξ is not normal in U either, since the family
Φ(f, z0)\Ξ is normal in U by Remark 1 with K1 = {0}, K2 = {∞}, and K3 = U . Therefore, Lemma 3
implies the existence of g ∈ Ξ and ξ0 ∈ U such that g(ξ0) = ξ0. According to the conditions of the lemma,
the iteration sequence {gn}n∈N is a normal family in W .

Consider two cases.
1. There is a subsequence gnk of the sequence gn which converges inW to a constant. Then U 6⊂ gn(U)

for some n. However, this contradicts the inclusion U ⊂ g(U).
2. There is a subsequence gnk of the sequence gn which converges in W to a nonconstant function.

Without loss of generality we may assume that mk = nk+1 − nk increases. The sequence gmk converges
in W to the identity mapping. However, this contradicts the inclusion gn(U) ⊃ g(U) ⊃ U , n > 0.

The proof of the lemma is over.

Lemma 5. Let f : C∗ → C∗ be an analytic relation and let R be the set of all repelling periodic
points of f . Then J (f) coincides with R.

Proof. The inclusion R ⊂ J (f) is obvious.
Prove that J (f) ⊂ R. Take z0 ∈ J (f) ∩ C∗ and let W ⊂ C∗, z0 ∈ W , be a simply connected

domain. Take a domain U 3 z0 so that U ⊂W . Put

Ξ = {g ∈ Φ(f, z0) | U ⊂ g(U)}.

The family Ξ is not normal in U . Therefore, by Lemma 3 there are g ∈ Ξ and ξ0 ∈ U such that g(ξ0) = ξ0.
Consider the entire function h = log ◦ g ◦ exp. For a proper choice of the branch of the logarithm the

point w0 = log ξ0 is a fixed point of h. Arguments similar to those in the proof of Lemma 4 show that the
family {hn}n∈N is not normal in Ω = log(W ). Therefore, Ω contains a point of the set B = J (h)\{∞}.
Hence, the assertion of the lemma is obvious in case h(z) has the form az+b, while follows from Theorem B
otherwise.

Lemma 6. Suppose that f : T → T , T ∈ {C,C}, is an analytic relation, F is the set of all its
branches in T , and G is the set of all finite compositions of functions in F . In the case of T = C we also
require that F contains no linear-fractional functions. The set⋃

g∈G

J (g)

is everywhere dense in J (f).
Introduce some notations. Given a domain D and ϕn ∈ H (D), n = 1, 2, . . . , put

E({ϕn}n∈N, D) = {ξ ∈ C : ∃ zn(∃n0 ∀n > n0 zn 6∈ ϕn(D)) ∧ zn → ξ},
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Q({ϕn}n∈N, D) =
⋃
E({ϕnk

}k∈N, D),

where the union is calculated over all increasing sequences nk of positive integers.
Remark 7. The sets Q({ϕn}n∈N, D) and E({ϕn}n∈N, D) are compact.
Remark 8. For a sequence ϕn to be a normal family in D, it suffices that Card(E({ϕn}n∈N, D)) > 2.
Remark 9. The following hold for every subsequence {ϕnk

}k∈N and every subdomain U ⊂ D:

E({ϕn}n∈N, D) ⊂ E({ϕnk
}k∈N, D) ⊂ Q({ϕnk

}k∈N, D) ⊂ Q({ϕn}n∈N, D),

E({ϕn}n∈N, D) ⊂ E({ϕn}n∈N, U), Q({ϕn}n∈N, D) ⊂ Q({ϕn}n∈N, U).

The assertions of Remarks 7–9 will be used below without specification.
We prove the following two auxiliary assertions:

Lemma 7. Let {φn}n∈N be an arbitrary sequence of analytic functions in a domain D which is not
a normal family in D. Denote by N the set of all subsequences {φnk

}k∈N which are not normal families
in D. Then there is {vk}k∈N ∈ N such that Q({vk}k∈N, D) = E({vk}k∈N, D).

Proof. Put
` = max{Card(E({ψk}k∈N, D)) : {ψk}k∈N ∈ N}.

Note that ` < 3. Suppose that Card(E({χ0 k}k∈N, D)) = ` and {χ0 k}k∈N ∈ N. Prove the following

Assertion 1. For every subsequence {ηk}k∈N ∈ N of {χ0 k}k∈N and every compact set K, K ∩
E({ηk}k∈N, D) = ∅, there is a subsequence {ϑk}k∈N ∈ N of {ηk}k∈N such that

K ∩Q({ϑk}k∈N, D) = ∅.

Proof of Assertion 1. Denote by {mk}k∈N the sequence of all numbers m such that K ⊂ ηm(D)
and denote by {pk}k∈N the sequence of the other numbers. Put ϑk = ηmk

. It suffices to demonstrate
that the sequence {ηpk

}k∈N is a normal family in D. Let {%k}k∈N be an arbitrary subsequence. Let us
show that from this subsequence we can extract a convergent subsequence in D. It suffices to choose
a subsequence which is a normal family in D. To this end, take a sequence zk ∈ K\%k(D). Extract a con-
vergent subsequence {zkq}q∈N from it. The corresponding subsequence {%kq}q∈N possesses the property
Card(E({%kq}q∈N, D)) > `. By construction, this means that {%kq}q∈N is a normal family in D.

Now, we consider two cases.
1. ` = 0. The assertion of the lemma is an immediate consequence of Assertion 1 for ηk = χ0 k and

K = C.
2. ` > 0. Without loss of generality we may assume that {χ0 k}k∈N has no convergent subsequences

in D (if necessary we can drop down to a subsequence with this property; there is such a subsequence,
since {χ0 k}k∈N is not a normal family). There is a sequence {{χj k}k∈N ∈ N}j∈N such that, for all
j = 1, 2, . . . , the sequence {χj k}k∈N is a subsequence of {χj−1 k}k∈N and the inclusion

Q({χj k}k∈N, D) ⊂ Qj

holds, where
Qj =

⋃
ω∈E({χ0 k}k∈N,D)

B(ω, 1/j).

Indeed, since each subsequence {ηk}k∈N ∈ N of {χ0 k}k∈N satisfies the equality

E({ηk}k∈N, D) = E({χ0 k}k∈N, D),

Assertion 1 with ηk = χj k and K = C\Qj+1 implies that each sequence {χj k}k∈N ∈ N has a subsequence
{χj+1 k}k∈N ∈ N such that Q({χj+1 k}k∈N, D) ⊂ Qj+1. Thus, we can prove the last assertion by induction.
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Put vk = χk k. For each j ∈ N the sequence {vk+j}k∈N is a subsequence of {χj k}k∈N; hence,

Q({vk}k∈N, D) ⊂ Q({χj k}k∈N, D) ⊂ Qj .

Therefore, Q({vk}k∈N, D) = E({χ0 k}k∈N, D). Since {χ0 k}k∈N has no subsequences convergent in D, it
follows that {vk}k∈N ∈ N.

The lemma is proven.

Let {sn}n∈N be a sequence of analytic functions in some neighborhood W of a point ζ0. Denote by
N({sn}n∈N, ζ0, R) the set of all subsequences of {sn}n∈N that are not normal families in B(ζ0, R) ⊂ W ,
and put

M({sn}n∈N, ζ0) =
⋂
R>0

N({sn}n∈N, ζ0, R).

Introduce the following abbreviations:

E({ϕn}n∈N, z, R) := E({ϕn}n∈N, B(z,R)),

Q({ϕn}n∈N, z, R) := Q({{ϕn}n∈N, B(z,R)).

Lemma 8. There exist a point ξ0 ∈W , a number δ∗ > 0, and a set E0 such that, for every δ ∈ (0; δ∗],
there is {vk}k∈N ∈ N({sn}n∈N, ξ0, δ) satisfying Q({vk}k∈N, ξ0, δ) = E({vk}k∈N, ξ0, δ) = E0.

Proof. Define the sequences

{ξj}j∈N, {δj > 0}j∈N, {{ψj k}k∈N}j∈N,

B(ξj+1, δj+1) ⊂ B(ξj , δj), {ψj+1 k}k∈N ∈ M({ψj k}k∈N, ξj+1), j = 1, 2, . . . ,

as follows: Put ψ1 k = sk. By Theorem C, there is a point ξ1 ∈W such that {ψ1 k}k∈N ∈ M({sn}n∈N, ξ1).
Take a number δ1 > 0 such that B(ξ1, δ1) ⊂W .

The other terms of the sequences are defined recurrently. Take j ∈ N. Consider a sequence {ψj k}k∈N.
Put

`j = max{Card(E({ϕk}k∈N, ξj , γ)) : 0 < γ 6 δj , {ϕk}k∈N ∈ N({ψj k}k∈N, ξj , γ)}.

Take γj ∈ (0, δj ] and a sequence {ϕj k}k∈N ∈ N({ψj k}k∈N, ξj , γj) such that

Card(E({ϕj k}k∈N, ξj , γj)) = `j .

Using Lemma 7, choose {ψj+1 k}k∈N ∈ N({ϕj k}k∈N, ξj , γj) such that

E({ψj+1 k}k∈N, ξj , γj) = Q({ψj+1 k}k∈N, ξj , γj).

By Theorem C, there is ξj+1 ∈ B(ξj , γj) such that

{ψj+1 k}k∈N ∈ M({sn}n∈N, ξj+1).

Take a number δj+1 such that B(ξj+1, δj+1) ⊂ B(ξj , γj). Note that, by construction, the integer-valued
sequence {`j}j∈N is bounded and nondecreasing. Moreover,

E({ϕj k}k∈N, ξj , γj) ⊂ E({ψj+1 k}k∈N, ξj+1, δj+1) ⊂ E({ϕj+1 k}k∈N, ξj+1, γj+1).

Therefore, there is m ∈ N such that the following equality holds for every 0 < γ 6 δm and every sequence
{ϕk}k∈N ∈ N({ψm k}k∈N, ξm, γ):

E({ϕk}k∈N, ξm, γ) = E({ψm k}k∈N, ξm, δm).

Denote ξ0 := ξm and E0 := E({ψm k}k∈N, ξm, δm). Put δ∗ = δm. Then the assertion of Lemma 8 follows
from Lemma 7 with φn = ψm n and D = B(ξm, δ).
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Proof of Lemma 6. Let z0 ∈ T ∩J (f) and let {gn}n∈N, gn = hn ◦ gn−1, hn ∈ F , g0(z) ≡ z, be
some iteration sequence which is not a normal family at z0.

By arguments similar to those in the proof of Lemma 4, it suffices to demonstrate that, for every
ε > 0, there exist a domain U , U ⊂ B(z0, ε), and a function ϕ ∈ G such that U ⊂ ϕ(U). To this end, it
suffices to establish the existence of a subsequence {θk}k∈N of {gk}k∈N, a point w0, and a number α > 0
such that

Q({θk}k∈N, w0, α) ⊂ B(−1/w0, 1/α) and B(w0, α) ⊂ B(z0, ε).

We apply Lemma 8 with sn = gn, ζ0 = z0, and W = B(z0, ε). Consider the following cases:
1. ξ0 6∈ E0. Choosing α ∈ (0, δ∗] so small that

B(ξ0, α) ⊂ B(z0, ε)\E0,

putting δ = α in Lemma 8, and denoting w0 := ξ0 and θk := vk, we complete the proof of the theorem.
2. ξ0 ∈ E0. Take δ ∈ (0; δ∗] such that B(ξ0, δ) ⊂ B(z0, ε)\(E0\{ξ0}). Let {vk}k∈N be the sequence of

Lemma 8. Consider the set X of all points z ∈ B(ξ0, δ), z 6= ξ0, such that {vk}k∈N ∈ M({gn}n∈N, z).
First, assume Card(E0) = 2.
Suppose X 6= ∅. Take w0 ∈ X and let α > 0 be so small that B(w0, α) ⊂ B(ξ0, δ)\{ξ0}. Since

{vk}k∈N ∈ M({gn}n∈N, w0), there is a sequence {θk}k∈N ∈ N({vk}k∈N, w0, α) having no convergent sub-
sequences in B(w0, α). Now, the assertion of the theorem follows from the equalities

E({θk}k∈N, w0, α) = Q({θk}k∈N, w0, α) = E0 and B(w0, α) ∩ E0 = ∅.

Show that X 6= ∅ indeed. Suppose the contrary. Without loss of generality we may assume that
ξ0 6= ∞. Let ṽk := λk ◦ vk, where λk is a sequence of conformal automorphisms of the sphere which
converges to a nondegenerate linear-fractional mapping such that {ξ0,∞} ∩ ṽk(B(ξ0, δ)) = ∅ for all
sufficiently large numbers k. Such a sequence exists, since Card(E0) = 2.

Without loss of generality we may assume that {ṽk}k∈N has no convergent subsequences in any
neighborhood of ξ0, while converges in its deleted neighborhood B(ξ0, δ)\{ξ0} (if necessary we drop down
to a subsequence of {ṽk}k∈N with this property). Denote the limit by q(z). Since ṽk in a neighborhood
of ξ0 is representable as a Cauchy integral, we have q(z) ≡ ∞. Put mk := min{|ṽk(z) − ξ0| : z ∈ γ},
where γ ⊂ B(ξ0, δ) is a fixed circle |z − ξ0| = r. From the maximum principle applied to the functions
1/(ṽk(z)− ξ0) we conclude that mk < |ṽk(z)− ξ0|, |z− ξ0| < r. Since mk →∞ as k →∞, it follows that
ṽk converges to ∞ in the domain |z − ξ0| < r. This contradiction completes the proof.

Now, assume Card(E0) = 1.
This case may hold only for T = C. From some number on, we then have vk(B(ξ0, δ))∪B(ξ0, δ) = C

and consequently either B(ξ0, δ) ∩ J (vk) 6= ∅ or J (vk) = ∅. In the first case the theorem has been
already proven. The second case is impossible by Theorem A.

The proof is complete.

Lemma 9. Let f : C → C be an analytic relation and F (f) = C. Then for each z0 ∈ C the family
Φ(f, z0) is normal at z0.

Proof. Denote the set of all compositions of the branches of f by G. Consider an arbitrary g ∈ G.
The set J (g)\{∞} is empty. Therefore, g = az+ b, where a and b are constants: otherwise J (g) would
contain infinitely many points by Theorem A. Moreover, |a| 6 1: otherwise there would exist a repelling
fixed point b/(1− a) ∈ C.

Take {gn ∈ G}n∈N, gn = anz+ bn. Choosing a subsequence of positive integers nk such that ank
and

bnk
converge, we obtain a convergent subsequence gnk

. It follows that G is a normal family, as required.

Proofs of Propositions 1 and 2 and Theorem 1

Proof of Proposition 1. Denote by F ∗(f) the set of all points z0 ∈ ∆ for which the family
Φ(f, z0) is normal at z0. Obviously, F (f) ⊂ F ∗(f).
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Prove the reverse inclusion.
Denote ` = Card(C\F (f)). If ` > 2 then the proof reduces to appealing to Lemma 2 and Montel’s

criterion.
Now, suppose that ` 6 2. Without loss of generality we may assume that F (f) ∈ {C,C,C∗}. Note

that the case F (f) = C is impossible. Supposing the contrary, we find that ∆ = C; in consequence, each
branch g of f is a rational function and so C = F (f) ⊂ F (g), which contradicts Theorem A.

Thus, the assertion of the theorem follows from Lemmas 2 and 4 or 9 (depending on whether F (f) =
C∗ or F (f) = C) applied to T = F (f).

Proof of Proposition 2. Suppose the contrary; i.e., suppose that there exist a point z0 ∈ T ∩
J (f) and its simply connected neighborhood U such that D = U\{z0} ⊂ F (f). This means that
there is a subsequence {gn}n∈N of the iteration sequence which has no convergent subsequence in any
neighborhood of z0. Without loss of generality we may assume that ∞ 6∈ F (f) and gn converges on D
to some function h : D → C. Note that, by Lemma 2, if h is nonconstant then h(D) ⊂ F (f).

Take z1, z2 ∈ (C\F (f)\{z0}), z1 6= z2. By the Cauchy integral theorem, if ∞ 6∈ h(D) and gnk
(z0) 6=

∞ for all k ∈ N then gnk
converges in U .

The following cases exhaust all possibilities.
1. h(D) ∩ {z1, z2} = ∅. Using conformal automorphisms of the sphere, we can pass to the case of

z1 = ∞. Therefore, ∃n1 ∀n > n1 gn(z0) = z1. Similarly, ∃n2 ∀n > n2 gn(z0) = z2. Thus, we arrive at
a contradiction, since z1 6= z2.

2. h ≡ zj , j ∈ {1, 2}. Without loss of generality we may assume that j = 1. Then ∃n2 ∀n > n2

gn(z0) = z2. Thus, the equality gn2+m = ϕm ◦ gn2 , m > 0, holds, where ϕm is some subsequence of
the iteration sequence at z2; moreover, ϕm(z2) = z2 for all m. The point z2 has a deleted neighborhood
W = gn2(D) ⊂ F (f). Placing ∞ at z0 by means of conformal automorphisms of the sphere, we conclude
that ϕm → z0 on W ; consequently, h ≡ z0 which contradicts the assumption.

The contradiction proves the proposition.

Proof of Theorem 1. Theorem 1 follows from Lemmas 5 and 6.
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