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c© 2009 Birkhäuser Verlag Basel/Switzerland

Carathéodory Convergence of Immediate
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Abstract. Let fn be a sequence of analytic functions in a domain U with a
common attracting fixed point z0. Suppose that fn converges to f0 uniformly
on each compact subset of U and that z0 is a Siegel point of f0. We establish
a sufficient condition for the immediate basins of attraction A∗(z0, fn, U)
to form a sequence that converges to the Siegel disk of f0 as to the kernel
w. r. t. z0. The same condition is shown to imply the convergence of the Kœnigs
functions associated with fn to that of f0. Our method allows us also to obtain
a kind of quantitative result for analytic one-parametric families.

Mathematics Subject Classification (2000). Primary 37F45; Secondary 30D05,
37F50.

Keywords. Iteration of analytic functions, Fatou set, Siegel disk, basin of at-
traction, convergence as to the kernel.

1. Introduction

1.1. Preliminaries

Let U be a domain on the Riemann sphere C and f : U → C a meromorphic
function. Define fn, the n-fold iterate of f , by the following relations: f1 : U → C,
f1 := f , fn+1 :

(
fn

)−1(U) → C, fn+1 := f ◦ fn, n ∈ N. It is convenient to define
f0 as the identity map of U . Denote

E(f, U) :=
⋂
n∈N

(
fn

)−1(U).

The Fatou set F(f, U) of the function f (w. r. t. the domain U) is the set of all
interior points z of E(f, U) such that {fn}n∈N is a normal family in some neigh-
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bourhood of z. Define the Julia set J (f, U) of f (with respect to the domain U)
to be the complement U \ F(f, U) of the Fatou set.

Classically iteration of analytic (meromorphic) functions has been studied for
the case of U ∈ {

C, C, C∗ := C \ {0}} and f : U → U , see survey papers [1, 2]
for the details. As an extension the cases of transcendental meromorphic functions
and functions meromorphic in C except for a compact totally disconnected set
have been also investigated, see, e.g., [3, 4]. (Note that f(U) �⊂ U for these cases.)
In this paper we shall restrict ourselves by the following
Assumption. Suppose that U, f(U) ⊂ C, i.e., f is an analytic function in a subdo-
main U of C.

One of the basic problems in iteration theory of analytic functions is to study
how the limit behaviour of iterates changes as the function f is perturbed. A
large part of papers in this direction are devoted to the continuity property for
the dependence of the Fatou and Julia sets on the function to be iterated. We
mention the work of A. Douady [5], who investigates the mapping f �→ J (f, C)
from the class of polynomials of fixed degree to the set of nonempty plane com-
pacta equipped with the Hausdorff metric dH(X, Y ) := max{∂(X, Y ), ∂(Y, X)},
∂(X, Y ) := supx∈X dist(x, Y ). We also mention subsequent papers [6]–[11] dealing
with other classes of functions. Continuity of Julia sets is closely related to be-
haviour of connected components of the Fatou set containing periodic points. Now
we recall necessary definitions.

Let z0 ∈ U be a fixed point of f . The number λ := f ′(z0) is called the
multiplier of z0. According to the value of λ the fixed point z0 is said to be attracting
if |λ| < 1, neutral if |λ| = 1, and repelling if |λ| > 1. An attracting fixed point
is superattracting if λ = 0, or geometrically attracting otherwise. Suppose z0 is a
neutral fixed point of f and none of fn, n ∈ N, turns into the identity map; then
the fixed point z0 is parabolic if λ = e2πiα for some α ∈ Q, or irrationally neutral
otherwise. If an irrationally neutral fixed point belongs to F(f, U), then it is called
a Siegel point.

The component of the Fatou set F(f, U) that contains a fixed point z0 is
called the immediate basin of z0 and denoted by A∗(z0, f, U). The immediate basin
of a Siegel point is called a Siegel disk, and the immediate basin of an attracting
fixed point is called an immediate basin of attraction. It is a reasonable convention
to put by definition A∗(z0, f, U) := {z0} for fixed points z0 ∈ J (f, U), in particular
for repelling and parabolic ones.

By passing to a suitable iterate of f , the above definitions are naturally
extended to periodic points.

1.2. Main results

Consider a sequence {fn : U → C}n∈N of analytic functions with a common at-
tracting fixed point z0 ∈ U . Suppose that fn converges to f0 uniformly on each
compact subset of U . It is easily follows from arguments of [5] that A∗(z0, fn, U) →
A∗(z0, f0, U) as to the kernel w. r. t. z0 provided z0 is an attracting or parabolic
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fixed point of the limit function f0. At the same time A∗(z0, fn, U) fails to con-
verge to A∗(z0, f0, U) in general if z0 is a Siegel point of f0 (see Example 1 in
Section 4). Similarly, the dependence of Julia sets on the function under iteration
fails to be continuous at f0 (with respect to the Hausdorff metric) if f0 has (gen-
erally speaking, periodic) Siegel points. Nevertheless, in the paper [12] devoted
to the continuity of Julia sets for one-parametric families of transcendental entire
functions H. Kriete established an assertion, which can be stated as follows.

Theorem A. Suppose f : C × C → C; (λ, z) �→ fλ(z) is an analytic family of
entire functions fλ(z) = λz + a2(λ)z2 + · · · and λ0 := e2πiα0 , where α0 ∈ R \ Q

is a Diophantine number. Let Δ be any Stolz angle at the point λ0 with respect
to the unit disk {λ : |λ| < 1}. Then A∗(0, fλ, C) → A∗(0, fλ0 , C) as to the kernel
w. r. t. z0 when λ → λ0, λ ∈ Δ.

Remark 1.1. It was proved by C. Siegel [13] that for a fixed point with multi-
plier e2πiα, α ∈ R \ Q, to be a Siegel point, it is sufficient that α be Diophantine.
This condition is not necessary even if restricted to the case of quadratic polyno-
mials f(z) := z2 + c, c ∈ C (see [14, Th. 6] and [15]). Furthermore, it is easy to
construct a nonlinear analytic germ with a Siegel point for any given α ∈ R \ Q.

The Diophantine condition on α0 is substantially employed in [12], and in
view of the above remark it is interesting to find out whether this condition is
really essential in Theorem A. Another question to consider is the role of analytic
dependence of fλ on λ. A possible answer is the following statement improving
Theorem A.

Theorem 1.2. Let f0 : U → C be an analytic function with a Siegel point z0 ∈ U
and {fn : U → C}n∈N a sequence of analytic functions with an attracting fixed
point at z0. Suppose that fn converges to f0 uniformly on each compact subset
of U and the following conditions hold

(i)
∣∣ arg

(
1 − f ′

n(z0)/f ′
0(z0)

)∣∣ < Θ for some Θ < π/2 and all n ∈ N;
(ii) the functions

(
fn(z)−f0(z)

)
/
(
f ′

n(z0)−f ′
0(z0)

)
, n ∈ N, are uniformly bounded

on each compact subset of U .
Then A∗(z0, fn, U) converges to A∗(z0, f0, U) as to the kernel w. r. t. z0.

Condition (i) in this theorem requires that λn := f ′
n(z0) tends to λ0 := f ′

0(z0)
within a Stolz angle, condition (ii) appears instead of analytic dependence of fλ

on λ, and the Diophantine condition on α0 turns out to be unnecessary. Both
conditions (i) and (ii) are essential. We discuss this in Section 4.

Dynamics of iterates in the immediate basin of a fixed point can be described
by means of so-called Kœnigs function.

Let z0 be a fixed point of an analytic function f . The Kœnigs function ϕ
associated with the pair (z0, f) is a solution to the Schröder functional equation

ϕ
(
f(z)

)
= λϕ(z), λ := f ′(z0), (1.1)

analytic in a neighbourhood of z0 and subject to the normalization ϕ′(z0) = 1.
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It is known (see, e.g., [16, pp. 73–76, 116], [17]) that the Kœnigs function
exists, is unique, and can be analytically continued all over A∗(z0, f, U) provided
z0 is a geometrically attracting or Siegel fixed point. If the Kœnigs function is
known, then the iterates can be determined by means of the equality

ϕ
(
fn(z)

)
= λnϕ(z), λ := f ′(z0).

By ϕk, k ∈ N0 := N ∪ {0}, denote the Kœnigs function associated with the
pair (z0, fk). We prove the following

Theorem 1.3. Under the conditions of Theorem 1.2, the sequence ϕn converges
to ϕ0 uniformly on each compact subset of A∗(z0, f0, U).

The assertion of Theorem 1.3 should be understood in connection with Theo-
rem 1.2, because the uniform convergence of ϕn on a compact set K ⊂ A∗(z0, f0, U)
requires that K were in the range of definition of ϕn, i.e., in A∗(z0, fn, U), for all
n ∈ N apart from a finite number.

Assumption. Hereinafter it is convenient to assume without loss of generality
that z0 = 0, saving symbol z0 for other purposes.

For any a ∈ C and A ⊂ C let us use aA as the short variant of {az : z ∈ A}.
By D(ξ0, ρ) denote the disk {ξ : |ξ − ξ0| < ρ}, but reserve the notation D for the
unit disk D(0, 1).

Remark 1.4. The Kœnigs function ϕ0 associated with the Siegel point of f0 admits
another description (see, e.g., [16, p. 116], [17]) as the conformal mapping of the
Siegel disk A∗(0, f0, U) onto a Euclidean disk D(0, r) that satisfies the condition
ϕ0(0) = ϕ′

0(0) − 1 = 0. From this viewpoint it will be convenient to consider
the conformal mapping ϕ, ϕ(0) = 0, ϕ′(0) > 0, of A∗(0, f0, U) onto the unit
disk D instead of the Kœnigs function ϕ0. Obviously, ϕ(z)/ϕ0(z) is constant, and
consequently, ϕ satisfies the Schröder equation (1.1) for f := f0. For shortness, S
will stand for A∗(0, f0, U). By ψ denote the inverse function to ϕ and let Sr :=
ψ(rD), Lr := ∂Sr for r ∈ [0, 1]. One of the consequences of the fact mentioned
above is that f0 is a conformal automorphism of S and Sr, r ∈ (0, 1).

During the preparation of this paper another proof of Theorems 1.2 and 1.3
given in [18, p. 3] became known to the author. However, our method allows
us also to establish an asymptotic estimate for the rate of covering level-lines of
the Siegel disk by basins of attraction for one-parametric analytic families. Let
f : W ×U → C; (λ, z) �→ fλ(z), where U 	 0 and W are domains in C, be a family
of functions and α0 an irrational number satisfying the following conditions:

(i) fλ(z) depends analytically on both the variable z ∈ U and the parame-
ter λ ∈ W ;

(ii) fλ(0) = 0 and f ′
λ(0) = λ for all λ ∈ W ;

(iii) λ0 := exp(2πiα0) ∈ W and the function fλ0 has a Siegel point at z0 = 0,
with S := A∗(0, fλ0 , U) lying in U along with its boundary ∂S.
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Consider the continued faction expansion of α0 and denote the nth convergent
by pn/qn. (See, e.g., [19, 20] for a detailed exposition on continued factions.) For
x > 0 we set

n0(x) := min
{

n ∈ N :
2qnqn+1

qn + qn+1
≥ x

}
, 
(x) := qn0(x).

Notation ϕ, ψ, S, and Sr will refer to the limit function fλ0 . Lemma 2.2 with a
slight modification can be used to prove the following statement.

Theorem 1.5. For any Stolz angle Δ at the point λ0 there exist a constant C > 0
and a function ε : (0, 1) → (0, +∞) such that for any r ∈ (0, 1) the following
statements are true:

(i) Sr ⊂ A∗(0, fλ, U) for all λ ∈ W ∩ Δ satisfying |λ − λ0| < ε(r);
(ii) ε(r) ≥ C(1 − r)3/


(
(1 − r)−γ

)
,

where γ > γ0 := 1 + max
{
βψ(1), βψ(−1)

}
and βψ stands for the integral means

spectrum of the function ψ,

βψ(t) := lim sup
r→1−

log
∫ 2π

0
|ψ′(reiθ)|t dθ

− log(1 − r)
. (1.2)

It is known [21] that βψ(1) ≤ 0.46 and βψ(−1) ≤ 0.403 for any function ψ
bounded and univalent in D. Consequently, γ0 ≤ 1.46.

Theorem 1.5 has been published in [22]. We sketch its proof and specify the
function ε(r) explicitly in Section 3.

2. Proof of theorems

2.1. Lemmas

Denote λk := f ′
k(0), k ∈ N0. Let us fix arbitrary n∗ ∈ N and consider the linear

family

fλ[n∗](z) := (1 − t)f0(z) + tfn∗(z), t :=
λ − λ0

λn∗ − λ0
, z ∈ U, λ ∈ C. (2.1)

The number n∗ will be not varied throughout the discussion in the present section.
So we shall not indicate dependence on n∗ until it is necessary. In particular we
shall often write fλ instead of fλ[n∗].

We need the following elementary statement on approximation of integrals
by quadrature sums (see, e.g., [23, pp. 55–62]).

Theorem B. Suppose φ is a continuously differentiable function on [0, 1]. Then for
any N ∈ N and any set of points x0, x1, . . . , xN−1 ∈ [0, 1] the following inequality
holds ∣∣∣∣∣∣

1∫
0

φ(x) dx − 1
N

N−1∑
n=0

φ(xn)

∣∣∣∣∣∣ < Q
(
x0, x1, . . . , xN−1

) 1∫
0

|φ′(x)| dx, (2.2)
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where Q
(
x0, x1, . . . , xN−1

)
:= sup

x∈[0,1]

∣∣F (x; x0, x1, . . . , xN−1) − x
∣∣ and

F (x; x0, x1, . . . , xN−1) :=
1
N

N−1∑
n=0

θ(x − xn), θ(y) :=
{

1, if y > 0,
0, if y ≤ 0.

Remark 2.1. Consider the sequence xβ
n := {α0n + β}, where { · } stands for

fractional part, α0 is given by λ0 = e2πiα0 , and β is an arbitrary real number.
Denote

Qβ,N := Q
(
xβ

0 , xβ
1 , . . . , xβ

N−1

)
.

Since α0 ∈ R\Q, we have (see, e.g., [23, pp. 102–108]) Qβ,N → 0 as N → +∞.

Fix any r0 ∈ (0, 1). The following lemma allows us to determine ε∗ > 0 such
that Sr0 ⊂ A∗(0, fλ, U) whenever | arg(1− λ/λ0)| < Θ and |λ− λ0| < ε∗. In order
to state this assertion we need to introduce some notation.

Denote

k0(z) :=
z

(1 − z)2
, z ∈ D, kγ(z) := eiγk0(e−iγz), γ ∈ R,

u(z) :=
fn∗(z) − f0(z)

λn∗ − λ0
, H(ξ) := 1 +

ξψ′′(ξ)
ψ′(ξ)

,

J(t) :=
ξu′(ψ(ξ))ψ′(ξ) − u(ψ(ξ))H(λ0ξ)

λ0ξψ′(λ0ξ)
, ξ := r0e

2πit.

For τ ∈ (0,− log r0) and N ∈ N we put

QN := inf
β∈R

Qβ,N , aN := 2πQN

∫ 1

0

|J(t)| dt,

ΛN(τ, ε) :=
√

1 + 2b2 cos 2ϑ + b4 − 1 + b2

2b cosϑ
, ε > 0,

where ϑ := Θ + arcsinaN , b := πεN(1 − aN )/(4τ),

εN(τ) :=
1 − kπ(r∗)/kπ(r∗)

sup
z∈Sr∗

|1 − fn∗(z)/f0(z)| |λn∗ − λ0| , r∗ := r0e
τ(1−1/N), r∗ := r0e

τ .

Lemma 2.2. Let N ∈ N and τ ∈ (0,− log r0). If aN < sin(π/2−Θ), then fN
λ

(
Sr0

) ⊂
Sr0 for all λ such that

∣∣ arg(1 − λ/λ0)
∣∣ < Θ and |λ − λ0| < ε∗, where ε∗ :=

εN (τ) ΛN

(
τ, εN (τ)

)
.

Remark 2.3. In view of Montel’s criterion the inclusion fN
λ

(
Sr0

) ⊂ Sr0 in Lem-
ma 2.2 implies that Sr0 ⊂ A∗(0, fλ, U). We will use this simple fact without
reference.

Lemma 2.2 in a slightly different form has been proved in [22]. We state
its proof here for completeness of the discussion. The scheme of the proof is the
following. The main idea is to fix arbitrary z0 ∈ Lr0 and consider the function
sN (λ) = sN (z0, λ) := ϕ(fN

λ (z0)). The first step (Lemma 2.4) is to determine a
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neighbourhood of λ0 where sN is well defined, analytic and takes values from a
prescribed domain of the form {ξ : ρ1 < |ξ| < ρ2}. The next step (Lemma 2.5) is
to calculate the value of (∂/∂λ) log sN(λ) at λ = λ0, which turns out to be equal to

AN (z0) :=
s′N (λ0)
sN (λ0)

=
N−1∑
k=0

G
(
λk

0ϕ(z0)
)
,

where G is an analytic function in D. The concluding step is to use the equal-
ity

∫ 1

0 G
(
e2πitϕ(z0)

)
dt = 1/λ0 and Theorem B in order to estimate |AN (z0)|

and | argAN (z0)|. This allows us to employ a consequence of the Schwarz lemma
(Proposition 2.6) for proving that |sN (λ)| ≤ |ϕ(z0)| for any λ satisfying | arg(1 −
λ/λ0)| < Θ and |λ − λ0| < ε∗. Since z0 ∈ Lr0 is arbitrary, this means that
fN

λ

(
Sr0

) ⊂ Sr0 for all such values of λ.

Lemma 2.4. Under the conditions of Lemma 2.2, sN (z, λ) := ϕ
(
fN

λ (z)
)

is a well-
defined and analytic function for all z ∈ Sr0 and λ ∈ D(λ0, εN(τ)). Moreover, the
following inequality holds

r0e
−τ < |sN (z, λ)| < r0e

τ , z ∈ Lr0 , λ ∈ D(λ0, εN(τ)). (2.3)

Proof. Let us show that for any r1 ∈ (0, 1), r2 ∈ (r1, 1) the following inclusion
holds

B(z0, r1, r2) :=
{
z : |z − z0| < |z0|

(
1 − kπ(r1)/kπ(r2)

)} ⊂ Sr2 \ Sr3 , (2.4)

where z0 ∈ Lr1 and r3 := r2
1/r2. To this end we remark that for any z0 ∈ Lr1 the

domain Sr2 \ Sr3 contains all points z such that∣∣ log(z/z0)
∣∣ < log

(
kπ(r2)/kπ(r1)

)
(2.5)

for some of the branches of log. To make sure this statement is true it is sufficient
to employ the following estimate, see, e.g., [24, p. 117, inequal. (18)],∣∣∣∣log

zψ′(z)
ψ(z)

∣∣∣∣ ≤ log
1 + |z|
1 − |z| , z ∈ D, (2.6)

Owing to (2.6), for any rectifiable curve Γ ⊂ Sr2 \Sr3 that joins z0 with Lr2 or Lr3

we have∫
Γ

∣∣∣∣dz

z

∣∣∣∣ =
∫

ϕ(Γ)

∣∣∣∣ψ′(ξ)
ψ(ξ)

∣∣∣∣ |dξ| ≥
∫

ϕ(Γ)

∣∣∣∣ψ′(ξ)
ψ(ξ)

∣∣∣∣ d|ξ|

≥ min

⎧⎨
⎩

r2∫
r1

(1 − r)dr

(1 + r) r
,

r1∫
r3

(1 − r)dr

(1 + r) r

⎫⎬
⎭ = log

(
kπ(r2)/kπ(r1)

)
.

Using the inequality | log(1+ ξ)| ≤ − log(1−|ξ|), ξ ∈ D, we conclude that for
any z ∈ B(z0, r1, r2),∣∣ log

(
z/z0

)∣∣ =
∣∣ log

(
1 + (z − z0)/z0

)∣∣
≤ − log

(
1 − |z − z0|/|z0|

)
< log

(
kπ(r2)/kπ(r1)

)
,

i.e., all z ∈ B(z0, r1, r2) satisfy condition (2.5). Therefore inclusion (2.4) holds.
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Let r ∈ (0, e−τ/N). Set r′ := reτ/N and r′′ := re−τ/N . Consider an arbitrary
function h subject to the following conditions: h is analytic in S, h(0) = 0, and
|h(z) − z| < |z|(1 − kπ(r)/kπ(r′)

)
for all z ∈ Sr \ {0}.

Set r1 := |z0|, r2 := |z0|eτ/N for some z0 ∈ Sr \ {0}. Since kπ(x)/kπ(xeτ/N )
increases with x ∈ (0, r], the Schwarz lemma can be applied to the function h(z)−z
to conclude that h(z0) ∈ B(z0, r1, r2) for all z0 ∈ Sr \ {0}. Therefore (2.4) implies
the following inclusions

h(Sr) ⊂ Sr′ , h(Lr) ⊂ Sr′\Sr′′ . (2.7)

By considering the function
(
h(z) − z

)
/z with fλ0(w) substituted for z it is

easy to check that since the function fλ0 is an automorphism of Sr for any r ∈ (0, 1]
(see Remark 1.4), the above argument can be applied to h(z) := fλ(f−1

λ0
(z)) for all

λ ∈ D(λ0, εN (τ)) and r ∈ (0, r∗]. Thus (2.7) implies that for any λ ∈ D(λ0, εN(τ)),

fλ

(
Srj

) ⊂ Srj+1 , j = 0, 1, . . . , N − 1, (2.8)

fλ

(
Srj\Sr−j

) ⊂ Srj+1\Sr−(j+1) , j = 0, 1, . . . , N − 1, (2.9)

where rj := r0e
jτ/N , j = 0,±1, . . . ,±N . Applying (2.8) repeatedly, we see that

fN
λ (Sr0) ⊂ SrN . Similarly, (2.9) implies that fN

λ (Lr0) ⊂ SrN\Sr−N . The former
means that the function sN (z, λ) is well defined and analytic for all z ∈ Sr0 and
λ ∈ D(λ0, εN (τ)), while the latter means that inequality (2.3) holds for indicated
values of λ. This completes the proof of Lemma 2.4. �

Lemma 2.5. Under the conditions of Lemma 2.4, the following equality holds

AN (z0) :=
∂ log sN (z0, λ)

∂λ

∣∣∣∣
λ=λ0

=
N−1∑
k=0

G
(
λk

0ϕ(z0)
)
, z0 ∈ Lr0 , (2.10)

where

G(ξ) :=
u
(
ψ(ξ)

)
λ0ξψ′(λ0ξ)

.

Proof. Consider the following function of n + 1 independent variables

gn(z; λ1, . . . , λn) :=
{ (

fλn ◦ · · · ◦ fλ1

)
(z), n ∈ N,

z, n = 0.

Note that

AN (z0) =
ϕ′(fN

λ0
(z0)

)
sN (z0, λ0)

· ∂gN(z0; λ, . . . , λ)
∂λ

∣∣∣∣
λ=λ0

and

∂gN(z0; λ, . . . , λ)
∂λ

∣∣∣∣
λ=λ0

=
N−1∑
k=0

g′N,k+1(z0; λ0, . . . , λ0),

where g′n,j stands for (∂/∂λj)gn. Using the equality

gN(z; λ1, . . . , λn) = gN−j

(
fλj

(
gj−1(z; λ1, . . . , λj−1)

)
; λj+1, . . . , λN

)
,
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we get
g′N,k+1(z0; λ0, . . . , λ0) =

(
fN−k−1

λ0

)′(
fk+1

λ0
(z0)

) · u(fk
λ0

(z0)
)
.

Schröder equation (1.1) for f := fλ0 allows us to express f j
λ0

and
(
f j

λ0

)′ in terms
of ϕ and ψ. Denoting zj := f j

λ0
(z0), j ∈ N0, we obtain

g′N,k+1(z0; λ0, . . . , λ0) = λN−k−1
0 ψ′(λN−k−1

0 ϕ(zk+1)
)
ϕ′(zk+1)u(zk)

= λN−k−1
0 ψ′(λN−k−1

0 ϕ(zk+1)
) u(zk)

ψ′(ϕ(zk+1)
)

= λN−k−1
0 ψ′(λN

0 ϕ(z0)
) u

(
ψ
(
λk

0ϕ(z0)
))

ψ′(λk+1
0 ϕ(z0)

) .

In the same way, we get

ϕ′(fN
λ0

(z0)
)

sN (z0, λ0)
=

1
ψ′(λN

0 ϕ(z0)
)
λN

0 ϕ(z0)
.

Now one can combine the obtained equalities to deduce (2.10). �

Proposition 2.6. Let τ > 0 and Θ ∈ (0, π/2). If a function v(ς) is analytic in D

and satisfies the following inequalities

|v(0)|e−τ < |v(ς)| < |v(0)|eτ , ς ∈ D, (2.11)

ϑ :=
∣∣ arg{v′(0)/v(0)}∣∣ + Θ < π/2,

then the modulus of t := πv′(0)/(4τv(0)) does not exceed 1 and the following
inequality holds

|v(ς)| ≥ |v(0)|, ς ∈ Ξ(ρ0), (2.12)
where Ξ(ρ) stands for the circular sector {ς : |�m ς| ≤ |ς| sinΘ ≤ ρ sin Θ} and
ρ0 :=

√
γ2 + 1 − γ, γ := (1 − |t|2)/(2|t| cosϑ).

Proof. Replacing v(ς) with v(ς)/v(0), we can suppose that v(0) = 1. The multi-
valued function

φ(ξ) := h

(
exp

(
iπ log ξ

2τ

))
, h(z) := −i

z − 1
z + 1

,

maps the annulus {ξ : e−τ < |ξ| < eτ} conformally onto D (in the sense of [24,
p. 248]) and satisfies the conditions φ(1) = 0, φ′(1) > 0. Since the composition
f := φ ◦ v can be continued analytically along every path in D, it defines an
analytic function f : D → D, f(0) = 0. By the Schwarz lemma, |f ′(0)| ≤ 1. Since
f ′(0) = φ′(1)v′(0) = πv′(0)/(4τ) = t, the first part of Proposition 2.6 is proved.
To prove the remaining part we note that (2.12) is equivalent to the inequality
�e f(ς) ≥ 0. Applying the invariant form of the Schwarz lemma to f(z)/z, we
obtain ∣∣∣∣∣f(ς) − f ′(0)ς

ς − f ′(0)f(ς)

∣∣∣∣∣ ≤ |ς|, ς ∈ D,
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It follows that f(ς) lies in the closed disk of radius R := |ς|2(1 − |t|2)/(1 − |tς|2)
centred at σ0 := tς(1 − |ς|2)/(1 − |tς|2). Therefore for the inequality �e f(ς) ≥ 0
to be satisfied, it is sufficient that �e σ0 ≥ R. An easy calculation leads to the
following condition

cos(arg t + arg ς) ≥ |ς|(1 − |t|2)
|t|(1 − |ς|2) ,

which is satisfied for all points of the arc

l(ρ) := {ς : |�m ς| ≤ |ς| sin Θ = ρ sinΘ}, ρ ∈ (0, 1),

provided

cosϑ ≥ ρ(1 − |t|2)
|t|(1 − ρ2)

. (2.13)

The right-hand of (2.13) increases with ρ ∈ (0, 1) and ρ := ρ0 satisfies (2.13).
Therefore inequality (2.12) holds for all ς ∈ ⋃

ρ∈[0,ρ0]
l(ρ) = Ξ(ρ0). This completes

the proof of Proposition 2.6. �

Proof of Lemma 2.2. Consider the function sN (z, λ) introduced in Lemma 2.4.
This lemma states that sN (z, λ) is well defined and analytic for all z ∈ Sr0 and λ ∈
D(λ0, εN (τ)) and satisfies inequality (2.3). According to Remark 1.4, fλ0

(Lr

)
= Lr

for all r ∈ [0, 1). Consequently |sN (z, λ0)| = |ϕ(z)|, z ∈ S. Therefore for any
z0 ∈ Lr0 the function v(ς) := 1/sN

(
z0, λ0(1 − εN (τ)ς)

)
is analytic in D and

satisfies inequality (2.11).
Let us employ now Proposition 2.6. To this end we compute the logarithmic

derivative of v(ς) at ς = 0. By Lemma 2.5,

v′(0)
v(0)

= λ0εN (τ)AN (z0) = λ0εN (τ)
N−1∑
k=0

G
(
λk

0ϕ(z0)
)
.

Consider the sum EN :=
∑N−1

k=0 G(λk
0ϕ(z0))/N . It can be regarded as an

approximate value of the integral E∗ :=
∫ 1

0
G
(
r0e

2πi(t+t0)
)
dt, where t0 ∈ R is an

arbitrary number, which does not affect E∗:

E∗ =
1

2πi

∫
|ξ|=r0

G(ξ)
ξ

dξ = R e s
ξ=0

G(ξ)
ξ

= G(0) =
1
λ0

.

Applying Theorem B to the points xn := xβ
n, β := (arg ϕ(z0))/(2π) − t0, and the

function φ(t) := G
(
r0e

2πi(t+t0)
)
, we get the following estimate

|EN − E∗| < Qβ,N

∫ 1

0

∣∣(d/dt)G
(
r0e

2πi(t+t0)
)∣∣ dt.

Since t0 ∈ R is arbitrary real, we have

|EN − E∗| ≤ QN

∫ 1

0

∣∣(d/dt)G
(
r0e

2πi(t+t0)
)∣∣ dt. (2.14)
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The function under the sign
∫ 1

0
| · |dt is

dG
(
r0e

2πi(t+t0)
)

dt
= 2πi ξG′(ξ) = 2πi J(t + t0), ξ := r0e

2πi(t+t0).

From (2.14) it follows that∣∣∣∣∣ 1
N

·
N−1∑
k=0

G(λk
0ϕ(z0)) − 1

λ0

∣∣∣∣∣ ≤ aN ,

and hence, ∣∣∣∣ 1
N

· v′(0)
v(0)

− εN (τ)
∣∣∣∣ ≤ aNεN (τ). (2.15)

Since by condition 0 ≤ aN < 1, inequality (2.15) implies that∣∣∣∣v′(0)
v(0)

∣∣∣∣ ≥ N(1 − aN )εN (τ), (2.16)

∣∣∣∣arg
v′(0)
v(0)

∣∣∣∣ ≤ arcsinaN . (2.17)

Now if we recall that validity of (2.11) has been already verified and take
into account (2.16), (2.17), we see that the conditions of Proposition 2.6 are sat-
isfied. Therefore, by elementary reasoning we see that (2.12) holds for all ς ∈
Ξ
(
ΛN

(
τ, εN (τ)

))
. In terms of sN this means that

|sN (z0, λ)| ≤ |sN (z0, λ0)| = r0, λ ∈ Ξ0, (2.18)

where
Ξ0 :=

{
λ :

∣∣λ − λ0

∣∣ < ε∗,
∣∣ arg(1 − λ/λ0)

∣∣ < Θ
}
.

Since z0 ∈ Lr0 = ∂Sr0 is arbitrary in the above arguments, by the maximum
modulus theorem, inequality (2.18) implies that |ϕ(fN

λ (z))| < r0 for all z ∈ Sr0

and λ ∈ Ξ0. Therefore for indicated values of λ we have fN
λ

(
Sr0

) ⊂ Sr0 . This
completes the proof of Lemma 2.2. �

2.2. Proof of Theorem 1.2

Suppose that the sequence {fn}n∈N satisfies the conditions of Theorem 1.2. Then
every subsequence of fn also meets these conditions. So we have only to prove that
S := A∗(0, f0, U) is the kernel of the sequence An := A∗(0, f0, U), that is:

(i) any compact set K ⊂ S lies in all but a finite number of An’s;
(ii) S is the largest domain that contains z = 0 and satisfies condition (i).

Now we employ Lemma 2.2 in order to prove (i). To this end we should fix
any r0 ∈ (0, 1) such that Sr0 ⊃ K, specify appropriate values of N and τ , and
trace the dependence on the choice of n∗. As a result we would prove that

ε0
∗ := inf

n∗∈N

ε∗ > 0. (2.19)

Since λn → λ0 as n → +∞, (2.19) would imply that K ⊂ Sr0 ⊂ A∗(z0, fn, U) for
all n ∈ N large enough.
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Set τ := (1 + r0)/(2r0). In view of condition (ii) of Theorem 1.2,

L := sup
n∗∈N

(∫ 1

0

|J(t)| dt

)
< +∞.

Since by Remark 2.1, QN → 0 as N → +∞, there exists N ∈ N such that

QN <
sin (π/4 − Θ/2)

2πL
.

Fix any such value of N . Then aN < sin(π/4 − Θ/2) < sin(π/2 − Θ). Hence
Lemma (2.2) is applicable to the specified values of N and τ .

Let us estimate ε∗ from below. In view of condition (ii) of Theorem 1.2,

ε0 := inf
n∗∈N

εN(τ) > 0.

Denote b := πεN (τ)N(1 − aN )/(4τ), b1 := min{1, b}.
Since ϑ = Θ + arcsinaN < π/4 + Θ/2 < π/2, we have

ΛN

(
τ, εN(τ)

) ≥
√

1 + 2b2
1 cos 2ϑ + b4

1 − 1 + b2
1

2b1 cosϑ

≥
√

1 + 2b2
1 cos 2ϑ + (b2

1 cos 2ϑ)2 − 1 + b2
1

2b1 cosϑ

> b1 cosϑ > b1 cos(π/4 + Θ/2)

≥ cos(π/4 + Θ/2)min

{
1,

πε0N
(
1 − sin(π/4 − Θ/2)

)
4τ

}
=: C0.

The constant C0 is positive and does not depend on n∗. From the inequality
ε∗ > ε0C0 it follows that (2.19) takes place. This proves assertion (i).

To prove (ii) let us assume the converse. Then there exists a domain S′ �⊂ S,
0 ∈ S′, satisfying (i). Let z0 ∈ S′ \ S and Γ ⊂ S′ be a curve that joins points
z = 0 and z0. Consider any domain D such that Γ ⊂ D and K := D ⊂ S′. By the
assumption, K ⊂ An for all n large enough. Now we claim that

D ⊂ E(f0, U). (2.20)

Consider an arbitrary ζ0 ∈ D. Suppose that ζ0 �∈ E(f0, U). Then there exists
j0 ∈ N such that f j0

0 is well defined (and so analytic) in some domain D0 	 ζ0,
D0 ⊂ D, with f j

0 (ζ0) ∈ U , j < j0, but f j0
0 (ζ0) �∈ U . Since the sequence fn converges

to f0 uniformly on each compact subset of U , the sequence f j0
n converges to f j0

0

uniformly on each compact subset of D0. According to Hurwitz’s theorem, this
means that f j0

n (D0) �⊂ U for all n ∈ N large enough. Consequently, D �⊂ E(fn, U)
for large n. At the same time, K = D ⊂ An ⊂ E(fn, U) for all n large enough.
This contradiction proves (2.20).
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The remaining part of the proof depends on the properties of the domain U .
Since U ⊂ C, we have three possibilities:

(Hyp) The domain U is hyperbolic. Then by Montel’s criterion, F(f0, U) coincides
with the interior of E(f0, U). Since D 	 0 is connected, we conclude that
z0 ∈ Γ ⊂ D ⊂ S. With this fact contradicting the assumption, the proof
of (ii) for the hyperbolic case is completed.

(Euc) The domain U coincides with C. The functions fn, n ∈ N0, are entire
functions.

(Cyl) The domain U is the complex plane punctured at one point.

Let us prove (ii) for case (Euc). Since Γ∩∂S �= ∅ and ∂S ⊂ J (f0, C), we have
D∩J (f0, C) �= ∅. The classical result proved for entire functions by I.N. Baker [25]
asserts that the Julia set coincides with the closure of the set of all repelling
periodic points. Therefore, D contains a periodic point of f0 different from 0. Owing
to Hurwitz’s theorem, the same is true for fn provided n is large enough. This leads
to a contradiction, because the immediate basin of attraction A∗(0, fn, U) contains
no periodic points except for the fixed point z = 0. Assertion (ii) is now proved
for case (Euc).

It remains to consider case (Cyl). Similarly to case (Euc), we need only to
show that D \ {0} contains a periodic point. By means of linear transformations
we can assume that U = C \ {1}. From (2.20) it follows that functions

φn(z) :=
fn
0 (z) − z

fn
0 (z) − 1

, n ∈ N,

does not assume values 1 and ∞ in D. Since D∩J (f0, U) �= ∅, the family {ϕn}n∈N

is not normal in D. Hence, due to Montel’s criterion, there exists z1 ∈ D and n0 ∈ N

such that φn0(z1) = 0 and so z1 ∈ D is a periodic point of f0. This completes the
proof of (ii) for case (Cyl).

By now (i) and (ii) are shown to be true. Theorem 1.2 is proved. �

2.3. Proof of Theorem 1.3

Fix any r0 ∈ (0, 1). As in the proof of Theorem 1.2 one can make use of Lemma 2.2
to show that there exist n1, N ∈ N such that fN

n (Sr0) ⊂ Sr0 for all n > n1. By
Remark 1.4 the function ϕ0 maps S conformally onto a Euclidian disk centred
at the origin. It is convenient to rescale the dynamic variable, by replacing fk,
k ∈ N0, with rfk(z/r) for some constant r > 0, so that ϕ0(S) = D (or equivalently
ϕ0 = ϕ). Then the functions gn(ζ) := (1/r0)

(
ϕ0 ◦ fN

n ◦ ϕ−1
0

)
(r0ζ), n > n1, are

defined and analytic in D. Furthermore, gn(0) = 0 and gn(D) ⊂ D for any n > n1.
Let us observe that for any analytic function f with a geometrically attractive
or Siegel fixed point z0 the Kœnigs function ϕ associated with the pair (z0, f) is
the same as that of the pair (z0, f

N ). Hence it is easy to see that the function
φn(ζ) := ϕn

(
ϕ−1

0 (r0ζ)
)
/r0 is the Kœnigs function associated with (0, gn). Since

S = ϕ−1
0 (D) and r0 ∈ (0, 1) is arbitrary, it suffices to prove that φn(ζ) → ζ as

n → +∞ uniformly on each compact subset of D.
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According to Remark 1.4, the function f0 is a conformal automorphism of S.
Therefore, with fn converging to f0 uniformly on each compact subset of U ⊃ S,
there exists n2 ≥ n1 such that for all n > n2 functions fN

n and consequently gn are
univalent in Sr0 and in D, respectively. It follows (see, e.g., [26]) that φn, n > n2,
are also univalent in D. The convergence of fn to f0 implies also that gn converges
to g0, g0(ζ) := λN

0 ζ, uniformly on each compact subset of D.
We claim that there exists a sequence

{
rn ∈ (0, 1)

}
n∈N

converging to 1 such
that for all n > n2 the domain φn(rnD) is contained in some disk {ξ : |ξ| < Rn}
that lies in φn(D). Owing to the Carathéodory convergence theorem and normality
of the family {φn : n ∈ N, n > n2}, this statement would imply convergence of
the sequence φn to the identity map and hence the proof of Theorem 1.3 would
be completed.

By p/q and p′/q′ let us denote some successive convergents of the number
αn :=

(
arg g′n(0)

)
/(2π) = (arg λN

n )/(2π) (regardless of whether αn is irrational or
not). Put Ωn := φn(D), κn := − log |g′n(0)| = −N log |λn|, an := κn(q − 1),
and bn := π(1/q + 2/q′). Consider a point ζ0 ∈ D and make use of the following
inequality (see, e.g., [24, p. 117, inequal. (18)]) from the theory of univalent function∣∣∣∣log

ζφ′
n(ζ)

φn(ζ)

∣∣∣∣ ≤ log
1 + |ζ|
1 − |ζ| , ζ ∈ D,

to obtain ∫
Γ

∣∣∣∣dw

w

∣∣∣∣ ≥ − log
(
4kπ(|ζ0|)

)
, kπ(z) :=

z

(1 + z)2
, z ∈ D, (2.21)

where Γ is any rectifiable curve that joins ξ0 := φn(ζ0) with ∂Ωn and lies in Ωn

except for one of the endpoints. The equality in (2.21) can occur only if φn is a
rotation of the Koebe function k0(z) := z/(1 − z)2 and Γ is a segment of a radial
half-line. It follows that Ωn contains the annular sector

Σ :=
{
ξ0e

x+iy : |x| ≤ an, |x| ≤ bn, x, y ∈ R
}

provided |ζ0| ≤ rn := k−1
π

(
(1/4) exp(−√

a2
n + b2

n)
)
. Moreover, Ωn is invariant

under the map ζ �→ λN
n ζ. Indeed,

λN
n ζ = λN

n φn

(
φ−1

n (ζ)
)

= φn

(
gn

(
φ−1

n (ζ)
)) ∈ Ωn

for all ζ ∈ Ωn. Denote

Σ0 :=
{
ξ0e

x+iy : |x| ≤ π/q, |x| ≤ bn, x, y ∈ R
}
, λ∗ := e−κ+2πip/q.

Since p and q are coprime integers, the union of the annular sectors λj
∗Σ0, j =

0, 1, . . . , q − 1, contains the circle ξ0T, T := ∂D. The inequality from the theory of
continued fractions |αn − p/q| ≤ 1/(qq′) implies that

λj
∗Σ0 ⊂ (

λN
n

)jΣ, j = 0, 1, . . . , q − 1.

Therefore, for any ξ0 ∈ φn(rnD) the domain Ωn contains the circle ξ0T. It
follows that φn(rnD) is a subset of some disk {ξ : |ξ| < Rn} contained in Ωn.
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It remains to choose the successive convergents p/q and p′/q′ of αn in such a
way that rn → 1 as n → +∞. To this end we fix some successive convergents p/q
and p′/q′ of α∗ := (arg λN

0 )/(2π) and note that p/q and p′/q′ are also successive
convergents of αn provided n is large enough, because αn → α∗ as n → +∞.
Using the fact that κn → 0 as n → +∞ and that the denominators of convergents
of the irrational number α∗ forms unbounded increasing sequence, we see that
it is possible to choose p/q for each n in such a way that

√
a2

n + b2
n → 0 and,

consequently, rn → 1 as n → +∞. The proof of Theorem 1.3 is now completed.
�

3. Proof of Theorem 1.5

In this section we sketch the proof of Theorem 1.5. First of all we note that the
proof of Lemma 2.2 does not use the fact that the dependence of fλ[n∗] (see
equation (2.1)) on the parameter λ is linear. So Lemma 2.2 can be applied to
any analytic family fλ satisfying conditions (i)–(iii) on page 168, provided some
notations are modified to a new (more general) setting. First of all we have to
redefine u(z) := ∂fλ(z)/∂λ|λ=λ0

. Then fix any r ∈ (0, 1) and consider the modulus
of continuity for the family hλ := fλ/fλ0 calculated at λ = λ0,

ωr(δ) := sup
{∣∣1 − fλ(z)/fλ0(z)

∣∣ : z ∈ Sr, λ ∈ W ∩ D(λ0, δ)
}
, δ > 0.

This quantity, as a function of δ, is defined, continuous, and increasing on the
interval I∗ := (0, δ∗), δ∗ := dist(λ0, ∂W ), with limδ→+0 ωr(δ) = 0. Therefore there
exists an inverse function ω−1

r : (0, ε∗) → (0, +∞), where ε∗ := limδ→δ∗−0 ωr(δ).
If ε∗ �= +∞, then we set ω−1

r (ε) := δ∗ for all ε ≥ ε∗. Now we can redefine εN (τ) as

εN (τ) := ω−1
r∗

(
1 − kπ(r∗)/kπ(r∗)

)
, r∗ := r0e

τ(1−1/N), r∗ := r0e
τ .

Finally, define Θ to be equal to the half-angle of Δ. To apply Lemma 2.2 we need
the following

Proposition 3.1. For any n ∈ N the following inequality holds

Qqn < (1/qn + 1/qn+1)/2. (3.1)

Proof. Fix n ∈ N. Due to the inequality |α0 − pn/qn| < 1/(qnqn+1) there exists
γ ∈ (0, 1/qn+1) such that

|α0 − pn/qn| < γ/qn. (3.2)
Let β0 :=

(
1/q− (−1)nγ

)
/2. Taking into account that pn and qn are coprime inte-

gers one can deduce by means of the inequalities γ < 1/qn+1 < 1/qn, (−1)n(α0 −
pn/qn) > 0, and (3.2) that

Qβ0,qn < (1/qn + 1/qn+1)/2. (3.3)

This proves the proposition. �
Now let us show how Theorem 1.5 can be proved. Fix r0 ∈ (0, 1). Define ε(r0)

in the following way.
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According to Proposition 3.1, 0 < aN < sin
(
π/4 − θ/2

)
for

N := 

(

2π
∫ 1

0

∣∣J(t)
∣∣ dt

/
sin

(
π/4 − θ/2

))
, τ := log

1 + 2r0

3r0
.

Hence, Lemma 2.2 can be used with the specified values of N and τ . Therefore,
we can set ε(r0) := ε∗, so that statement (i) in Theorem 1.5 becomes true. Let us
show that statement (ii) of this theorem is also true, assuming that r0 is sufficiently
close to 1.

Since S ⊂ U there exists C1 > 0 such that∣∣∣∣1 − fλ(ψ(ξ))
fλ0(ψ(ξ))

∣∣∣∣ < C1|λ − λ0|

for all ξ ∈ D and λ ∈ D(λ0, ε
0), where ε0 > 0 is chosen so that D(λ0, ε0) ⊂ W .

It follows that ω−1
r (s) ≥ min

{
ε0, s/C1

}
, for all s > 0, r ∈ (0, 1). Elementary

calculations show that

1 − kπ(r∗)
kπ(r∗)

≥ 1 − exp
(
− τ(1 − r∗)

N(1 + r∗)

)
≥ C2

(1 − r0)2

N

for some constant C2 > 0. Combining these two inequalities we obtain εN(τ) ≥
C3(1 − r0)2/N , where C3 := C2/C1. Now we estimate ΛN (τ, εN (τ)) in the same
way as in the proof of Theorem 1.2 to conclude that ε∗ ≥ C(1 − r0)3/N for some
constant C > 0. To complete the proof we use the following inequalities (see,
e.g., [24, p. 52]): ∣∣∣∣ξψ′′(ξ)

ψ′(ξ)
− 2r2

1 − r2

∣∣∣∣ ≤ 4r

1 − r2
, 0 ≤ r = |ξ| < 1,∣∣∣∣ψ′(ξ)

ψ′(0)

∣∣∣∣ ≥ 1 − r

(1 + r)3
, 0 ≤ r = |ξ| < 1,

which imply that N ≤ 

(
(1 − r0)−γ

)
for all r0 < 1 sufficiently close to 1. �

4. Essentiality of conditions in Theorem 1.2

In this section we show that conditions (i) and (ii) in Theorem 1.2 are essential.
As for condition (i) this can be regarded as a consequence of lower semi-continuity
of the Julia set.

Example 1. Consider the family fλ(z) := λz + z2 in the whole complex plane
(U := C). The map λ �→ J (fλ, C) is lower semi-continuous [5], i.e.,

J (fλ∗ , C) ⊂
⋂
ε>0

⋃
δ>0

⋂
|λ−λ∗|<δ

Oε

(J (fλ, C)
)

for any λ∗ ∈ C,

where Oε(·) stands for the ε-neighbourhood of a set. Let λ0 := e2πiα0 , α0 ∈ R\Q,
and αn ∈ Q converge to α0 as n → +∞. The point z0 := 0 is a parabolic fixed
point of fλ0

n
, λ0

n := exp(2πiαn), and so 0 ∈ J (fλ0
n
, C). Due to lower semi-continuity

of λ �→ J (fλ, C) at the points λ0
n, there exists a sequence {μn ∈ (0, 1)}n∈N such



Carathéodory Convergence of Immediate Basins. . . 181

that D(0, 1/n)∩J (fλn , C) �= ∅, λn := μnλ0
n, n ∈ N. It follows that A∗(0, fλn , C) →

{0} as to the kernel. Assume that fλ0 , λ0 := exp(2πiα0), has a Siegel point at
z0 = 0. This is the case if α0 is a Brjuno number ([14, Th. 6], see also [15]). The
sequence fn := fλn satisfies all conditions of Theorem 1.2 except for condition (i),
but the conclusion of Theorem 1.2 fails to be true. Therefore condition (i) is an
essential one.

It is known [27, p. 44] that condition (ii) can be omitted in Theorem 1.2 pro-
vided that the multiplier of the Siegel fixed point λ0 := f ′

0(z0) equals to exp(2πiα0)
for some Brjuno number α0. However, if no such assumptions concerning α0 are
made, condition (ii) cannot be omitted. This fact is demonstrated by the following

Example 2. Let α0 be an irrational real number. By qn denote the denominator
of the nth convergent of α0. Consider the sequence of polynomials

fn(z) :=
λ0

(
z + zqn+1

)
1 + 1/2qn

, λ0 := e2πiα0 ,

converging to f0(z) = λ0z uniformly on each compact subset of D.
We claim that the sequence of domains A∗(0, fn, D) does not converge to

A∗(0, f0, D) = D as to the kernel, provided the growth of qn is sufficiently rapid.
Assume the converse. Then for all n ∈ N large enough, say for n > n0, the
inclusion D48 ⊂ A∗(0, fn, D) holds, where Dj := j/(j + 1)D, j ∈ N. It follows
that fm

n (D48) ⊂ D for all n > n0, n ∈ N, and m ∈ N. Hence the family Φ :=
{fm

n }n>n0, n,m∈N0 is normal in the disk D48. In particular, there exist constants
C1 > 1, C2 > 0 such that∣∣(fm

n )′ (z)
∣∣ < C1, z ∈ D8, n > n0, n, m ∈ N0, (4.1)∣∣(fm

n )′′ (z)
∣∣ < C2, z ∈ D8, n > n0, n, m ∈ N0. (4.2)

Furthermore, by the Schwarz lemma,

fm
n (D4) ⊂ D5, fm

n (D6) ⊂ D7 n > n0, n, m ∈ N0, (4.3)

Consider functions gn := f qn
n , g̃n := f̃ qn

n ,

f̃n(z) :=
exp (2πipn/qn)

1 + 1/2qn

(
z + zqn+1

)
, z ∈ D, n > n0, n ∈ N,

where pn stands for the numerator of the nth convergent of α0. Apply the following
inequality∣∣f̃n(z) − fn(z)

∣∣ =
∣∣fn(z)

∣∣ · ∣∣λ0 − exp (2πipn/qn)
∣∣

≤ 4π

∣∣∣∣α − pn

qn

∣∣∣∣ ≤ 4π

qnqn+1
, z ∈ D, (4.4)

to prove that ∣∣g̃n(z) − gn(z)
∣∣ <

4πC1

qn+1
, z ∈ D4, (4.5)

for all n ∈ N large enough.
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Since qn → +∞ as n → +∞, there exists n1 ∈ N, n1 ≥ n0, such that
4π

qnqn+1
<

1
72

and
4πC1

qn+1
<

1
42

, n > n1, n ∈ N.

We shall show that for all n > n1, n ∈ N, and k = 1, 2, . . . , qn − 1 the following
implication holds (

P (j), j = 1, 2, . . . , k
)

=⇒ P (k + 1), (4.6)

where

P (j) :
[ ∣∣f̃ j−1

n (z)
∣∣ < 1, z ∈ D4, and

∣∣f̃ j
n(z) − f j

n(z)
∣∣ <

4jπC1

qnqn+1
, z ∈ D4.

]
(4.7)

Now let n > n1 and P (j) take place for all j = 1, 2, . . . , k. Relations (4.3),
(4.4), and (4.7) imply the following inclusions

f̃n(D6) ⊂ D8, f̃ j
n(D4) ⊂ D6, j = 1, 2, . . . , k. (4.8)

For j := k the latter guarantees that |f̃k
n(z)| < 1, z ∈ D4. Fix any z ∈ D4 and de-

note wj := f̃ j
n(z), ξ̃j := f̃n(wj), ξj := fn(wj). According to (4.3) and (4.8), we have

wj ∈ D6, ξ̃j , ξj ∈ D8, j = 1, 2, . . . , k. Taking this into account, from (4.1) and (4.4),
we get the following inequality∣∣∣f̃k+1

n (z) − fk+1
n (z)

∣∣∣ ≤ k∑
j=0

∣∣∣(fk−j
n ◦ f̃ j+1

n

)
(z) − (

fk−j+1
n ◦ f̃ j

n

)
(z)

∣∣∣
=

k∑
j=0

∣∣∣(fk−j
n ◦ f̃n

)
(wj) −

(
fk−j

n ◦ fn

)
(wj)

∣∣∣
=

k∑
j=0

∣∣∣fk−j
n (ξ̃j) − fk−j

n (ξj)
∣∣∣ <

k∑
j=0

C1|ξ̃j − ξj | ≤ 4(k + 1)πC1

qnqn+1
.

Therefore, (4.7) holds also for j := k + 1. This proves implication (4.6).
For j := 1 inequality (4.7) follows from (4.4). Hence P (1) is valid. Owing

to (4.6), P (1) implies P (qn). Therefore, inequality (4.5) holds for all n > n1.
The functions g̃n have the fixed point z̃∗ := 1/2. Now we apply (4.5) to show

that if
qn+1 ≥ 2qn , n ∈ N, (4.9)

then for any sufficiently large n ∈ N the function gn has also a fixed point z∗ ∈
D3 \ {0}. Straightforward calculation gives

g̃′n(z̃∗) = ln :=
(

1 + (qn + 1)/2qn

1 + 1/2qn

)qn

> 1.

From (4.2), (4.5), and the Cauchy integral formula it follows that

|g̃′′n(z)| < C3 := C2 + 51200πC1/qn+1, z ∈ D3, n > n1.
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Now we assume that n ∈ N is large enough and apply Rouché’s theorem to the
functions g̃n(z) − z and gn(z) − z in the disk Bn :=

{
z : |z − 1/2| < ρn

}
, where

ρn := (ln − 1)/(2C3). Since Bn ⊂ D3, we have

�e
d

dz

(
g̃n(z) − z

)
>

ln − 1
2

, z ∈ Bn.

It follows that

|g̃n(z) − z| ≥ (ln − 1)ρn

2
, z ∈ ∂Bn. (4.10)

Inequalities (4.5), (4.9), and (4.10) imply that |g̃n(z)−z| > |g̃n(z)−gn(z)| for
all z ∈ ∂Bn. Consequently, gn(z)− z vanishes at some point z∗ ∈ Bn. At the same
time, the immediate basin A∗(0, fn, D) contains no periodic points of fn except
for the fixed point at z0 = 0. Therefore, D3 �⊂ A∗(0, fn, D) for large n. This fact
implies that the sequence A∗(0, fn, D) does not converge to D as to the kernel.

It is easy to see that the prescribed sequence fn satisfies all conditions of
Theorem 1.2 with U := D except for condition (ii), but the conclusion fails to
hold. This shows that (ii) is also an essential condition in Theorem 1.2.
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