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Abstract

The classical Young-Laplace equation relates capillary pressure to surface ten-
sion and the principal radii of curvature of the interface between two fluids. It is
here derived along two main approaches to describe properties of space curves and
smooth surfaces: (1) by differential geometry and (2) linear algebra, in combina-
tion with considerations of (a) force equilibrium, and (b) minimization of surface
energy.

Introduction

The Young-Laplace equation (Young, 1805; Laplace, 1806)

pc = σ

(

1

R1
+

1

R2

)

, (1)

gives an expression for the capillary pressurepc, i.e., the pressure difference over
an interface between two fluids in terms of the surface tension σ and the principal
radii of curvature,R1 andR2. This expression is often encountered in the literature
covering the concepts of capillary pressure and wettability since it is quite general.

The expression in parenthesis in Eq. 1 is a geometry factor. At equilibrium,
each point on the interface has the same geometry factor.

It will be shown that this simple expression reflects the factthat for arbitrary,
smoothsurfaces and curves (Shifrin, 2013), the curvature at any point may be
defined by assigning two radii of curvature,R1 andR2, in two normal planesthat
cut the interface along twoprincipal curvature sections. These two normal planes
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are also normal to each other and their line of intersection is the surface normal
at the chosen point. Also, the curvature of an arbitrary normal section may be
expressed in terms of the principal curvatures.

With sufficient knowledge of the mathematical properties ofsurfaces, the
Young-Laplace equation may easily be derived either by the principle of mini-
mum energy or by requiring a force balance.

The properties of surfaces necessary to derive the Young-Laplace equation
may be found explicitly by differential geometry or more indirectly by linear al-
gebra. The combination of these two approaches gives insight into the properties
of smooth space surfaces that are required for the simple form of Young-Laplace
equation.

Space curves by differential geometry

Most of this section follows the exposition of space curves in the textbook by
Tambs Lyche (1962).

Let r denote the radius vector from the origin of the Cartesian coordinate sys-
tem(x, y, z) with unit vectors(i, j, k). A surface S may be defined by the vector
equation

r = f(u, v) = ϕ(u, v)i + ψ(u, v)j + χ(u, v)k, (2)

or in parameter form

x = ϕ(u, v), y = ψ(u, v), z = χ(u, v), (3)

whereϕ, ψ andχ are functions of the two parametersu andv. If the two first
equations in Eq. 3 are solved foru andv and substituted in the third equation,
we getz expressed as a function ofx and y, the usual way to represent a sur-
face. However, the parameter form is a very useful representation of a surface to
describe curvature characteristics.

If we setu = u(t) andv = v(t) we get the vector equationr = f(t) for a
space curve on the surface, or in parameter form:

x = ϕ(t), y = ψ(t), z = χ(t),

wheret is a parameter. By assumption, all functions are twice differentiable with
continuous second order derivatives. A curve or surface represented by functions
fulfilling this requirement is said to besmooth.
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Definitions

Arc Length. If f(t) is differentiable with continuous derivative in the interval
[a,b], then the arc lengthL is defined by

L =

∫ b

a
|ḟ(t)|dt,

where the dot denotes differentiation with respect tot . If t ∈ [a, b] and we set
s =

∫ t
a |ḟ(t)|dt, we get the arc differentialds = |ḟ(t)|dt = ±|dr|. Thens is a

continuous function oft that increases from 0 toL whent increases froma to b.
Instead oft , we can uses as a parameter to represent the curve. By thisarc length
form, many formulas are especially simple, e.g.,|r ′| = |dr/ds| = 1.

Tangent to a Curve.The vectort = dr/ds = r ′ is defined as thetangent vector
of the space curver = f(t). Since|t| = 1, t is a unity vector along the tangent of
the curve.

Curvature. Thecurvature Kof a curve is defined byK = |dt/ds| = |d2r/ds2| =

|r ′′|, or simplyK = |f ′′(s)|, the curve being on the arc length form.

Radius of Curvature.The radius of curvatureR of a space curve C is defined by
R = 1/K .

Principal Normal to a Curve.The principal normalh of a curve is defined by
h = r ′′/|r ′′| = r ′′/K . Sincer ′2 = 1 it follows thatr ′ · r ′′ = 0, and henceh is
normal tot (and the curve).

Normal of a Surface.Thesurface normaln to a surface at a point is defined by
n = ru × rv/|ru × rv|. Hereru andrv denotes partial derivatives ofr with respect
to u andv, cf. Eq. 2. The total differentialdr is given by

dr = rudu + rvdv,

and for the space curve on the surface,u = u(t) andv = v(t). From the definition
of t, dr is alongt, and it is easily seen thatdr · n = 0. That is,n is normal to all
curves on the surface drawn through the selected point.

Normal Plane and Normal Section.A plane through the normal to a surface, i.e.,
the normal is lying in the plane, is called anormal planeThe cut between a normal
plane and the surface is a curve on the surface and is called anormal section.
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Curvature of a Normal Section

Again, letr = f(u, v) a surface S andr = f(u(t), v(t)) a space curve C on S.
From the definitions, we haveK h = dt/ds. Multiplying by n gives

dt
ds

n = K cosθ,

whereθ is the angle between the principal normal to C and the surfacenormal at
the chosen point P, Fig. 1.

θ

t

h
n

P

C

S

Figure 1: Surface S, curve C through point P,t tangent to the curve,n surface normal, andh
principal normal to the curve.

Sincen · t = 0, we get by differentiation

n
dt
ds

+
dn
ds

t = 0,

and thereby

K = −
1

cosθ

dn
ds

t = −
1

cosθ

dn · dr
ds2

.

From the definition ofn, we haverun = 0, rvn = 0. Differentiating with respect
to u andv, we get

runu + ruun = 0, rvnu + ruvn = 0,
runv + ruvn = 0, rvnv + rvvn = 0.

Since
dn = nudu + nvdv, dr = rudu + rvdv,
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we have

dn · dr = runudu2 + (runv + rvnu)du dv + rvnvdv2

= −(ruun du2 + 2ruvn du dv + rvvn dv2),

and we get

K =
1

cosθ

L du2 + 2M du dv + N dv2

E du2 + 2F du dv + G dv2
, (4)

when

ds2 = dr2 = (rudu + rvdv)2

= r2
udu2 + 2rurvdudv + r2

vdv
2

and

E = r2
u, F = rurv, G = r2

v,

L = ruun, M = ruvn, N = rvvn.
(5)

We note that the quantitiesE, F,G, L ,M, N only depend on properties of the
surface S with no reference to the space curve C on the surface. For all curves C
that start out from point P in the same direction, determinedby the ratiodv : du,
the angelθ is the same according to Eq. 4. Conversely, all space curves through P
with the samet andh has the same curvature at P.

If we chooseθ = 0, K is the curvature of a normal section, i.e., the principal
normal of the curve coincides with the normal to the surface,

K =
L du2 + 2M du dv + N dv2

E du2 + 2F du dv + G dv2
. (6)

Principal Curvature Sections

If K is known, Eq. 6 is a quadratic equation for the ratiodv : du, and may be
written

(L − E K) du2 + 2(M − F K ) du dv + (N − GK) dv2 = 0. (7)

If this equation has two distinct roots, there will be two normal sections with
curvatureK . If it has only one root, there exist only one normal section with the
given curvature, and if there are no roots, no normal sectionexists with curvature
K . To discern these alternatives, we consider the expression

(M − F K )2 − (L − E K)(N − GK)
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that is under the square root sign when solving Eq. 7. This expression is generally
equal to zero for two values ofK , the principal curvatures K1 and K2. The
corresponding normal sections are called theprincipal curvature sections.

After simplifying the last expression, we have to investigate the roots of

(EG − F2)K 2 − (E N − 2F M + GL)K + (L N − M2) = 0. (8)

Solving this equation we have to find the square root of

(E N − 2F M + GL)2 − 4(EG − F2)(L N − M2).

As will be shown, this expression is never negative. Let us assume chosen values
for E, F,G, L , N such that the last expression is a function ofM, denoted by
ϕ(M). It is a polynomial of second degree with the derivative

ϕ′(M) = −4F(E N − 2F M + GL)+ 8(EG − F2)M,

andϕ′(M) = 0 for M = M1 = F(E N + GL)/2EG. Thenϕ′′(M) = 8EG> 0,
from the definition ofE andG, i.e.ϕ(M) has a minimum atM = M1, and after
some calculation

ϕ(M1) =
(EG − F2)(E N − GL)2

EG
≥ 0,

sinceEG − F2 = r2
ur2
v − (rurv)2 = (ru × rv)2 ≥ 0. Actually, we will assume

that EG − F2 > 0 since otherwiseru or rv is the null vector or they are parallel.
Thenϕ(M) can only be zero ifE N = GL andM = M1, i.e. GM = F N. We
then have

L

E
=

N

G
=

M

F
,

and from Eq. 6 the curvatureK is independent ofdu anddv and equal toL/E. A
point where the curvature is the same for all normal sectionsis called aumbilical
pointof the surface.

For a point P on the surface that is not a umbilical point, Eq. 8will have two
distinct roots,K1 andK2, as postulated above.

Principal Curvature Sections are Orthogonal

Substitution ofK = K1 or K = K2 into Eq. 7 results in a quadratic expression
of the general form(Adu+ Bdv)2, since the equation has single roots for these
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values ofK . Its derivative with respect todv then has to be zero for the same
values ofK , that is

(M − F K )du + (N − GK)dv = 0,

or

K =
Mdu + Ndv

Fdu + Gdv
.

Substituting this expression into Eq. 7, we get

(E M − F L)du2 + (E N − GL)dudv + (F N − GM)dv2 = 0.

From this equation we get the two directionsdv1 : du1 anddv2 : du2 (or the
inverted ratios ifF N − GM = 0), for the two principal curvature sections. Using
rules for the sum and product of the roots of a quadratic equation, we get

dv1

du1
+

dv2

du2
= −

E N − GL

F N − GM
,

dv1

du1

dv2

du2
=

E M − F L

F N − GM
.

We also have

dr1 = rudu1 + rvdv1, dr2 = rudu2 + rvdv2,

and hence

dr1 · dr2 = r2
udu1du2 + rurv(du1dv2 + du2dv1)+ r2

vdv1dv2

=

[

E + F

(

dv1

du1
+

dv2

du2

)

+ G
dv1

du1

dv2

du2

]

du1du2

=

[

E − F
E N − GL

F N − GM
+ G

E M − F L

F N − GM

]

du1du2

=
E(F N − GM)− F(E N − GL)+ G(E M − F L)

F N − GM
du1du2

= 0,

i.e. the principal curvature sections are orthogonal. (Onecan easily show that this
is the case also forF N − GM = 0).
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R

Figure 2: Arc differentials along a normal section and the two principal curvature sections.

A Theorem of Euler
A theorem of Euler (Weatherburn, 1947) states that the curvature of an arbi-

trary normal section may be expressed by the curvatures of the principal sections.
Let ds1 andds2 be the arc differentials of the two principal sections andds the
arc differential in a normal section at an angleα with ds1, Fig. 2.

Generally, if8(u, v) is a function ofu andv, we have

8(R)−8(P) = 8(R)−8(Q)+8(Q)−8(P),

or
8(R)−8(P)

ds
=
8(R)−8(Q)

ds1

ds1

ds
+
8(Q)−8(P)

ds2

ds2

ds
,

and lettingds1 andds2 approach zero,

d8

ds
=

d8

ds1

ds1

ds
+

d8

ds2

ds2

ds
=

d8

ds1
cosα +

d8

ds2
sinα.

We now apply this general expression tor andn and get

t =
dr
ds

= t1 cosα + t2 sinα

dn
ds

=
dn
ds1

cosα +
dn
ds2

sinα,

and by scalar multiplying these two expressions,

−K = t
dn
ds

= t1
dn
ds1

· cos2α +

(

t1
dn
ds2

+ t2
dn
ds1

)

sinα cosα + t2
dn
ds2

· sin2α

= −K1 cos2α − K2 sin2α +

(

t1
dn
ds2

+ t2
dn
ds1

)

sinα cosα.
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Sincen · t1 = n · t2 = 0, we get

t1
dn
ds2

+ n
t1

ds2
= 0, t2

dn
ds1

+ n
t2

ds1
= 0.

The curves C1 and C2 are embedded in two orthogonal planes,t1 · t2 = 0, andt1

is independent ofs2. Thereforedt1/ds2 = 0 and likewisedt2/ds1 = 0, and we
get Euler’s result

K = K1 cos2α + K2 sin2 α. (9)

Let us now choose another normal section at an angleα+π/2 withds1 and denote
the corresponding arc differential byds⊥ since it is at an angleπ/2 with ds. For
the corresponding curvatureK⊥ we get from Eq. 9

K⊥ = K1 cos2(α + π/2)+ K2 sin2(α + π/2)

= K1 sin2α + K2 cos2α.

By summation, we the get

K + K⊥ = K1 + K2, (10)

that is, the sum of the curvatures of two orthogonal normal sections is constant,
equal to the sum of the curvatures of the principal sections.

The Young-Laplace Equation

The Young-Laplace equation may be derived either by minimization of energy
or by summing all forces to zero. We will do both here althoughthe concept of
force in connection with surface tension may be somewhat obscure. The force
approach follows the derivation of Defay and Prigogine (1966) and the energy
approach is taken from the book by Landau and Lifshitz (1987). In both cases it
is assumed that the interface is without thickness and that the interfacial tension
is constant.

Force Balance

Consider a point P on the surface, Fig. 3, and draw a curve at a constant dis-
tanceρ from P. This curve forms the boundary of a cap for which we shall find
the equilibrium condition asρ tends to zero.

Through P we draw the two principal curvature sections AB andCD on the
surface. Their radii of curvature at P areR1 andR2. At the point A, an elementδl
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D

C

B

A

Figure 3: Equilibrium of a nonspherical cap.

of the boundary line is subjected to a forceσδl whose projection along the normal
PN is

σδl sinφ ≃ σφδl = σ
ρ

R2
δl ,

sinceφ by assumption is small.
If we consider four elementsδl of the periphery at A, B, C, and D, they will

contribute with a force

2ρσδl

(

1

R1
+

1

R2

)

.

Since this expression by Euler’s theorem, Eq. 10, is independent of the choice of
AB and CD, it can be integrated around the circumference. Since four orthogonal
elements are considered, the integration is made over one quarter of a revolution
to give

πρ2σ

(

1

R1
+

1

R2

)

.

The force on the surface element caused by the pressure difference over the surface
is given by(p1−p2)πρ

2, and equating the last two expressions Laplace’s equation
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follows.

Minimum Energy
Let the surface of separation undergo an infinitesimal displacement. At each

point of the undisplaced surface we draw the normal. The length of the segment
of the normal lying between the points where it intersects the displaced and undis-
placed surfaces is denoted byδζ . Then a volume element between the two sufaces
is δζd f , whered f is a surface element. Letp1 andp2 be the pressures in the two
media, and letδζ be positive if the displacement of the surface is towards medium
2 (say). Then the work necessary to bring about the change in volume is

∫

(−p1 + p2)δζd f.

The total workδW in displacing the surface is obtained by adding to this the
work connected with the change in area of the surface. This part of the work is
proportional to the changeδ f in area of the surface, and isσδ f , whereσ is the
surface tension. Thus the total work is

δW = −

∫

(p1 − p2)δζd f + σδ f. (11)

The condition for thermodynamical equilibrium is, of course, thatδW be zero.
Next, let R1 and R2 be the principal radii of curvature at a given point of the

surface. We setR1 andR2 as positive if they are drawn into medium 1. Then the
elements of length (the arc differentials)ds1 andds2 on the surface in its principal
curvature sections are increased to(R1 + δζ )ds1/R1 and(R2 + δζ )ds2/R2 when
the anglesds1/R1 andds2/R2 remain constant, i.e., an expansion normal to the
surface (ds1 is the arc length of a circle with radiusR1, and correspondingly for
ds2). Hence the surface elementd f = ds1ds2 becomes, after displacement,

ds1(1 + δζ/R1)ds2(1 + δζ/R2) ∼= ds1ds2(1 + δζ/R1 + δζ/R2),

i.e. it changes byδζd f (1/R1 + 1/R2). Hence we see that the total change in area
of the surface of separation is

δ f =

∫

δζ

(

1

R1
+

1

R2

)

d f. (12)

Substituting these expressions in Eq. 11 and equating to zero, we obtain the equi-
librium condition in the form

∫

δζ

{

(p1 − p2)− σ

(

1

R1
+

1

R2

)}

d f = 0.
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This condition must hold for every infinitesimal displacement of the surface, i.e.
for all δζ . Hence the expression in braces must be identically equal tozero and
Young-Laplace’s equation follows.

Space curves by linear algebra

x

y

z

X
Y

Z
(a,b)

Figure 4: Surface in space.

We assume the space surface defined byz = f (x, y) to besmooth(Shifrin, 2013).
A Taylor expansion around a point(a, b) gives an approximation to the surface
around(a, b),

f (x, y) = f (a, b)+
∂ f (a, b)

∂x
(x − a)+

∂ f (a, b)

∂y
(y − b)+

1

2!

[

∂2 f (a, b)

∂x2
(x − a)2 +

∂2 f (a, b)

∂y2
(y − b)2 +

∂2 f (a, b)

∂x∂y
(x − a)(y − b)+

∂2 f (a, b)

∂y∂x
(y − b)(x − a)

]

+ · · · . (13)

A new coordinate system(XY Z) is now introduced with origin in(a, b) and
the(XY) plane defined as the tangent plane to the surface at(a, b). This gives

f (0, 0) = 0,
∂ f (0, 0)

∂X
= 0, (14)
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∂ f (0, 0)

∂Y
= 0.

Since the surface is smooth, the order of differentiation isarbitrary, and the crossterms
may be added to render

Z = f (X,Y) ≈
1

2!

[

∂2 f (0, 0)

∂X2
X2 +

∂2 f (0, 0)

∂Y2
Y2 + 2

∂2 f (0, 0)

∂X∂Y
XY

]

,

=
1

2

[

fX XX2 + fY YY2 + 2 fXYXY
]

.

This may be reformulated as the matrix product

f (X,Y) ≈
1

2

(

X Y
)

(

fX X fXY

fXY fY Y

) (

X
Y

)

. (15)

The 2× 2 matrix in Eq. 15 formed by the partial derivatives off is symmetrical,
the matrix can be diagonalized with orthogonal eigenvectors (Howard, 1984), and
the surface may be approximated by the matrix product

f (X,Y) ≈ g(ξ, η) =
1

2

(

ξ η
)

(

α 0
0 β

) (

ξ

η

)

,

=
1

2
αξ2 +

1

2
βη2, (16)

Here ξ and η are the coordinates along the new unit vectors andα andβ the
corresponding eigenvalues. This is equivalent to a rotation of the tangent plane
around theZ-axis with the two new unit vectors(1 0)t and(0 1)t in the(ξη)-
plane.

In the (Zξ)-plane (η = 0), the functiong(ξ, 0) in Eq. 16 will form the
parabola

Z = g(ξ, 0) =
1

2
αξ2. (17)

Approximating the parabola with a circle of radiusRα, we get

ξ2 + (Z − Rα)
2 = R2

α,

ξ2 + Z2 − 2Z Rα + R2
α = R2

α,

ξ2 + Z2 − 2Z Rα = 0, (18)
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and solved with respect toZ,

Z = Rα ±

√

R2
α − ξ2,

= Rα(1 ±

√

1 −
ξ2

R2
α

),

= Rα(1 ± [1 +
ξ2

2R2
α

− . . .]).

Selecting the minus sign and deleting higher order terms, wearrive a the simple
expresson

Z ≈
ξ2

2Rα
. (19)

By comparing Eq. 17 and Eq. 19 we find

Z =
αξ2

2
=

ξ2

2Rα
,

and

Rα =
1

α
. (20)

The curvatureκ of a space curve at a point [Reference to part I definitions] is
defined as the inverse of the radius of curvature at the point.The curvature of the
parabolaZ = g(ξ, 0) is therefore

κ = α =
1

Rα
.

Considering instead the(Zη)-plane(ξ = 0), the curvature of the parabolaZ =

g(0, η) is given by

κ = β =
1

Rβ
.

A arbitrary plane normal to the tangent plane at the point(a, b) [Reference to part
I definitions] will cut the tangent plane(ξη) along a straight linel : ξ = Kη
whereK is a constant as shown i Fig. 5 The distanceλ between the point(a, b)
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ξ

η

ξ η=K

(a,b)
( , )ξ η

l

Figure 5: Arbitrary linel through point(a,b) in the tangent plane.

and a point(ξ, η) on l may then be expressed by

λ2 = ξ2 + η2,

= K 2η2 + η2,

=

(

K 2 + 1
)

η2. (21)

Solved with respect toη2 we get

η2 =
λ2

K 2 + 1
. (22)

The cut of the normal plane and the surfacef (ξ, η) is then

f (ξ, η) =
1

2
αξ2 +

1

2
βη2,

=
1

2
αK 2η2 +

1

2
βη2,

=
1

2
α

(

K 2λ2

K 2 + 1

)

+
1

2
β

(

λ2

K 2 + 1

)

,

=
1

2

[

K 2

K 2 + 1
α +

1

K 2 + 1
β

]

λ2. (23)

The curvature of the space curve defined by the cut between thenormal plane
touching the surface in(a, b) and the surfacef (ξ, η) is then, as shown above,
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given by

κ1 =
K 2

K 2 + 1
α +

1

K 2 + 1
β. (24)

The expression for the curvature is a weigthed average between α andβ. The
value ofκ1 lies betweenα andβ, i.e., between the largest and the smallest curva-
ture. Hence the two normal planes containing the space curvewith the largest and
smallest curvature are normal to each other. These two spacecurves are called the
principal curves.

A normal plane that cuts the tangent plane along the lineξ = Kη will cut
the surface along a curve on the surface, the normal section [Ref to part I] with
curvatureκ1. Another normal plane that is normal to the first one will cut the
tangent plane in the lineξ = −η/K and have a normal section with curvature

κ2 =
1

K 2 + 1
α +

K 2

K 2 + 1
β. (25)

Adding the two curvatures from Eqs. 24 and 25, vi get

κ1 + κ2 = α + β. (26)

The sum of the curvatures of two normal sections in planes also normal to each
other is constant and equal to the sum of the curvatures of theprincipal curves.

Surface energy and the Young-Laplace equation

We now consider the surface between two phases to be infitesimally displaced
by δζ . The volume element between the two surfaces isδζ · dSwheredS is the
surface element. LetP1 andP2 denote the pressures in the two phases. The work
done by the volume change is

δWp =

∫

(−P1 + P2) δζdS. (27)

The total work of the displacement also includes the work of changing the surface
area byδSand is given by

δWσ = σδS, (28)

whereσ is the surface tension. And the total work is

δW =

∫

(P2 − P1) δζdS+ σδS. (29)
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dS
dl1

(a,b)

dl2

R1

R2

θ1

θ2

dS'

δζ

dl'2

dl'1

Figure 6: Displaced surface between two phases.

At thermodynamic equilibrium this work is equal to zero.
It remains to express the surface area changeδS,

δS = dS′ − dS, (30)

in terms of the displacementδζ and the curvatures of the principal normal sec-
tions, 1/R1 and 1/R2. The surface areas before and after the displacement,dS
anddS′, respectively, are equal to the product of the length elements along the
principal normal sections since, as shown earlier, the normal sections are normal
to each other. Then,

dS = dl1dl2,

dS′ = dl ′1dl ′2, (31)

wheredl1, dl2 and dl ′1, dl ′2 are the length elements long the principal normal
sections before and after the displacement, respectively.The length elementsdl1
anddl ′1 may be written as

dl1 = R1θ1,

dl ′1 = (R1 + δζ )θ1,
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whereθ1 is the angle shown in Fig. 6. Then

dl ′1
dl1

=
R1 + δζ

R1

= 1 +
δζ

R1
.

Similar expressions are valid fordl2 anddl ′2. We substitute fordl ′1 anddl ′2 in
Eq. 31 and get

dS′ = dl ′1dl ′2,

=

(

1 +
δζ

R1

)

dl1

(

1 +
δζ

R2

)

dl2,

= dl1dl2

(

1 +
δζ

R1

) (

1 +
δζ

R2

)

,

= dS

(

1 +
δζ

R1
+
δζ

R2
+

δζ 2

R1R2

)

,

≈ dS

(

1 +
δζ

R1
+
δζ

R2

)

, sinceδζ 2 << R1R2. (32)

If this expression is substituted into Eq. 30 we get

δS = dS′ − dS,

= dS

(

1 +
δζ

R1
+
δζ

R2

)

− dS,

= dS

(

δζ

R1
+
δζ

R2

)

. (33)

This expression is inserted forδS in Eq. 29 to give

δW =

∫

(P2 − P1) δζdS+

∫

σ

(

1

R1
+

1

R2

)

δζdS

=

∫ {

−Pc + σ

(

1

R1
+

1

R2

)}

δζdS,

= 0, for alle δζ, (34)

wherePc = P1− P2 is the capillary pressure. Then, according to the fundamental
lemma of calculus of variations Papatzacos (1989),

−Pc + σ(
1

R1
+

1

R2
) = 0,

18



and rearranged we get

Pc = σ

(

1

R1
+

1

R2

)

, (35)

which is the Young-Laplace equation.

Nomenclature

[a, b] = interval
E F G
L M N

}

= parameters defined by Eq. 5.

f = area, m2

K = curvature, m−1

L = arc length, m
dl1, dl2 = length elements, m
dl ′1, dl ′2 = length elements, m

p = pressure, Pa
R = radius of curvature, m

R1, R2 = principal radii of curvature, m
s = arc length parameter, m
t = parameter, dimensionless
u = parameter, dimensionless
v = parameter, dimensionless

(x, y, z) = Cartesian coordinates
W = work, J
α = angle, radians
δ = differential operator
δζ = infinitesimal displacement of surfaces, m
σ = surface tension, N/m
θ = angle, radians
ς = length element along normal, m
ϕ = function of(u, v)
ψ = function of(u, v)
χ = function of(u, v)
ρ = radius of cap, m
φ = angle, radians

19



Subscripts

c = capillary
u = partial derivative with respect tou
v = partial derivative with respect tov
α = constant
Ŵ = adsorption (kg surfactant/kg rock)
γ = interfacial tension, N/m

Vectors

f = vector function, m
r = radius vector, m
t = tangent vector, dim.less

i, j, k = unit vectors, dim.less
h = principal normal to a curve, dim.less
n = surface normal, dim.less
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