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Abstract

The classical Young-Laplace equation relates capillagggure to surface ten-
sion and the principal radii of curvature of the interfacénmen two fluids. It is
here derived along two main approaches to describe prep@tispace curves and
smooth surfaces: (1) by differential geometry and (2) liredgebra, in combina-
tion with considerations of (a) force equilibrium, and (binimization of surface
energy.

I ntroduction

The Young-Laplace equation (Young, 1805; Laplace, 1806)
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gives an expression for the capillary presspggi.e., the pressure difference over
an interface between two fluids in terms of the surface tensiand the principal
radii of curvatureR; andRy. This expression is often encountered in the literature
covering the concepts of capillary pressure and wettglsilitce it is quite general.

The expression in parenthesis in Eq. 1 is a geometry factbegailibrium,
each point on the interface has the same geometry factor.

It will be shown that this simple expression reflects the that for arbitrary,
smoothsurfaces and curves (Shifrin, 2013), the curvature at amyt moay be
defined by assigning two radii of curvatuile, and Ry, in two normal planeghat
cut the interface along tworincipal curvature sectionsThese two normal planes
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are also normal to each other and their line of intersecahe surface normal
at the chosen point. Also, the curvature of an arbitrary rarsection may be
expressed in terms of the principal curvatures.

With sufficient knowledge of the mathematical propertiessaoffaces, the
Young-Laplace equation may easily be derived either by tireciple of mini-
mum energy or by requiring a force balance.

The properties of surfaces necessary to derive the Youptpta equation
may be found explicitly by differential geometry or more irgttly by linear al-
gebra. The combination of these two approaches gives inisitghthe properties
of smooth space surfaces that are required for the simpie édryoung-Laplace
equation.

Space curves by differential geometry

Most of this section follows the exposition of space curveshie textbook by
Tambs Lyche (1962).

Letr denote the radius vector from the origin of the Cartesiandioate sys-
tem (X, y, z) with unit vectors(i, j, k). A surface S may be defined by the vector
equation

r =f(u,v) =, v)i+ YU, v) + x(U, vk, (2)

or in parameter form

X=9pU,v), Yy=v%Unv), zZ=x(U,v), (3)

whereg, ¢ and x are functions of the two parametarsandv. If the two first
equations in Eq. 3 are solved farand v and substituted in the third equation,
we getz expressed as a function gfandy, the usual way to represent a sur-
face. However, the parameter form is a very useful reprasentof a surface to
describe curvature characteristics.

If we setu = u(t) andv = v(t) we get the vector equatian= f(t) for a
space curve on the surface, or in parameter form:

X=pM), y=v1), z=yx@®,

wheret is a parameter. By assumption, all functions are twice wffgable with
continuous second order derivatives. A curve or surfaceesgmted by functions
fulfilling this requirement is said to b&mooth



Definitions

Arc Length.If f(t) is differentiable with continuous derivative in the intatv
[a,b], then the arc lengtld is defined by

b .
£=/ If(t)|dt,
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where the dot denotes differentiation with respect.tdf t € [a, b] and we set
s = /2 [f(t)ldt, we get the arc differentials = [f(t)|dt = =£|dr|. Thensis a
continuous function of that increases from 0 t6 whent increases frona to b.
Instead ot, we can usa as a parameter to represent the curve. Bydhidength
form, many formulas are especially simple, elg’} = |dr/ds| = 1.

Tangent to a CurveThe vectort = dr/ds = r’ is defined as théangent vector
of the space curve = f(t). Since|t| = 1, t is a unity vector along the tangent of
the curve.

Curvature. Thecurvature Kof a curve is defined biK = |dt/ds| = |d?r/ds?| =
Ir”|, or simplyK = |f”(s)|, the curve being on the arc length form.

Radius of CurvatureThe radius of curvatur® of a space curve C is defined by
R=1/K.

Principal Normal to a Curve.The principal normalh of a curve is defined by
h=r"/Ir”| =r"”/K. Sincer 2 = 1 it follows thatr - r” = 0, and hencé is
normal tot (and the curve).

Normal of a SurfaceThe surface normah to a surface at a point is defined by
n=ryxry,/|ry xr,|. Herery andr, denotes partial derivatives ofwith respect
to u andv, cf. Eq. 2. The total differentiar is given by

dr =rydu+r,dv,

and for the space curve on the surfaces u(t) andv = v(t). From the definition
of t, dr is alongt, and it is easily seen thdt - n = 0. That is,n is normal to all
curves on the surface drawn through the selected point.

Normal Plane and Normal Sectior plane through the normal to a surface, i.e.,
the normal is lying in the plane, is callecharmal planeThe cut between a normal
plane and the surface is a curve on the surface and is caflethzal section



Curvature of a Normal Section

Again, letr = f(u, v) a surface S and = f(u(t), v(t)) a space curve C on S.
From the definitions, we hauweh = dt/ds. Multiplying by n gives

dt
—n = K cos9,
ds

whered is the angle between the principal normal to C and the surfacmal at
the chosen point P, Fig. 1.

Figure 1: Surface S, curve C through pointt Rangent to the curvey surface normal, ant
principal normal to the curve.

Sincen -t = 0, we get by differentiation

n$+d—nt:0
ds ds ’
and thereby
B 1 dn B 1 dn-dr
" coshds  cosd ds?

From the definition oh, we haveryn = 0, r,n = 0. Differentiating with respect
tou andv, we get

ruNy + ryun =0, ryNy +ryn =0,
raNy + rgyn =0, ryNy 4+ ryuyn =0.

Since
dn = nydu+n,dv, dr =rydu+r,do,



we have

dn-dr = rynydu®+ (ryn, + ryny)du dv + ryn,dv?
= —(rgundu? + 2ry,ndu dv + ry,ndv?),

and we get
1 Ldu?+2Mdudv+ N dv? @
"~ cost Edw? + 2F dudv + G dv?’
when
ds® = dr? = (rydu+r,dv)?
= r2du® + 2ryr,dudv + r2dv?
and
E=r2, F=ryry, G=r2 5)
L =rgun, M =ryyn, N =r,,n.

We note that the quantitids, F, G, L, M, N only depend on properties of the
surface S with no reference to the space curve C on the suifacall curves C
that start out from point P in the same direction, determimgthe ratiodv : du,
the angeb is the same according to Eq. 4. Conversely, all space cunvesdgh P
with the samé andh has the same curvature at P.

If we choose = 0, K is the curvature of a normal section, i.e., the principal
normal of the curve coincides with the normal to the surface,

B Ldu?+2M dudv + N dv?
 Edw@+2Fdudv + G dv?’

Principal Curvature Sections

If K is known, Eq. 6 is a quadratic equation for the ratio: du, and may be
written

K (6)

(L — EK)du?+2(M — FK)dudv + (N — GK) dv? = 0. (7)

If this equation has two distinct roots, there will be two mait sections with
curvatureK. If it has only one root, there exist only one normal sectioth\the
given curvature, and if there are no roots, no normal seetkists with curvature
K. To discern these alternatives, we consider the expression

(M — FK)2 = (L — EK)(N — GK)
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that is under the square root sign when solving Eq. 7. Thisssgon is generally
equal to zero for two values df, the principal curvatures K and K,. The
corresponding normal sections are calledphacipal curvature sections

After simplifying the last expression, we have to investigiie roots of

(EG—F%)K2—(EN—2FM +GL)K + (LN — M? =0. (8)
Solving this equation we have to find the square root of
(EN—2FM 4 GL)?> — 4EG — F?(LN — M?).

As will be shown, this expression is never negative. Let gssila® chosen values
for E, F, G, L, N such that the last expression is a function\f denoted by
¢(M). Itis a polynomial of second degree with the derivative

¢'(M) = —4F(EN —2FM + GL) + 8(EG — FA)M,

andg’(M) =0forM = M1 = F(EN + GL)/2EG. Then¢”(M) = 8EG > 0,
from the definition ofE andG, i.e.¢(M) has a minimum aM = M, and after
some calculation

(EG—F%)(EN—-GL)? .
EG =

¢(M1) = 0,

SiNCEEG — F2 = r2r2 — (ryry)2 = (ry x r,)? > 0. Actually, we will assume
that EG — F2 > 0 since otherwise, orr, is the null vector or they are parallel.
Theng(M) can only be zero iIEN = GL andM = My, i.,e.GM = FN. We

then have
L N M

E G F’
and from Eq. 6 the curvatui€ is independent aflu anddv and equal td_/E. A
point where the curvature is the same for all normal seci®nalled aumbilical
pointof the surface.
For a point P on the surface that is not a umbilical point, EgilBhave two
distinct roots K1 andK5, as postulated above.

Principal Curvature Sections are Orthogonal

Substitution oK = K1 or K = K» into Eqg. 7 results in a quadratic expression
of the general form{Adu + Bdv)?, since the equation has single roots for these



values ofK. Its derivative with respect tdv then has to be zero for the same
values ofK, that is

(M — FK)du+ (N — GK)dv = 0,
or
B Mdu + Ndv

~ Fdu+Gdv’
Substituting this expression into Eq. 7, we get

(EM — FL)du? + (EN — GL)dudv + (FN — GM)dv? = 0.

From this equation we get the two directioths; : du; anddv, : dup (or the
inverted ratios iff N — GM = 0), for the two principal curvature sections. Using
rules for the sum and product of the roots of a quadratic éguate get

dvi  duvp EN-GL dvldvz_ EM-—-FL

du1+duz__FN—GM’ duiduy, FN—-GM’

We also have
drlzrudu1+rvdv1, dr2=ruduz+fvdv2,
and hence

dri-dro = rﬁdulduz+rurv(duldv2+duZdv1)+r§dv1duz
dvy duvp dvq dvp
= (e 7 (G * i) * O dug
EN-GL EM-—-FL
= [E_FFN—GM+ FN—GM]dU1du2
E(FN—-GM)—-F(EN-GL)+ G(EM — FL)d
FN-GM

Uld Uo

= 0,

i.e. the principal curvature sections are orthogonal. (Careeasily show that this
is the case also fdFN — GM = 0).
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Figure 2: Arc differentials along a normal section and the psincipal curvature sections.

A Theorem of Euler

A theorem of Euler (Weatherburn, 1947) states that the turgaf an arbi-
trary normal section may be expressed by the curvatureggdrthcipal sections.
Letds; andds be the arc differentials of the two principal sections asdhe
arc differential in a normal section at an anglevith ds;, Fig. 2.

Generally, if®(u, v) is a function ofu andv, we have

P(R) — ®(P) = ®(R) — 2(Q) + 2(Q) — ®(P),

®[R)-d(P)  PR) — q>(Q)d_Sl n ®(Q) — CD(P)d_Sz
ds N ds ds ds ds’
and lettingds; andds, approach zero,
d® ddds dodds do do

We now apply this general expressiorrtandn and get

dr .
t = — =ty1cosy + tySina
ds

d_n = d_n cosu + d_n sin
ds dg ds *
and by scalar multiplying these two expressions,
d_n
ds
dn dn dn\ . dn .
= t;— -cofa + (t;— +to— ) sina cosa + to— - sirfa
ds ds ds, ds
dn

. dn .
= —Kjicofa — Kysirfa + (tl— + tp— | sina cosa.
dg ds

-K =1
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Sincen -t; =n-t; =0, we get

t1ﬂ+nt—1:0, tzd—n-i-nt—z =0.
d  dg Sl Sl
The curves @and G are embedded in two orthogonal plangs,t, = 0, andty
is independent of,. Thereforedt;/ds = 0 and likewisedty/ds; = 0, and we
get Euler’s result
K = Kycofa + Kasirfa. (9)

Let us now choose another normal section at an angle /2 withds; and denote
the corresponding arc differential lohs; since itis at an angle /2 with ds. For
the corresponding curvatuke; we get from Eq. 9

Ki = Kicof(a+7/2) + KasirP(a + 7/2)
= Klsinzoz + K> cofa.

By summation, we the get
K+ K| =K1+ Ko, (10)

that is, the sum of the curvatures of two orthogonal normetises is constant,
equal to the sum of the curvatures of the principal sections.

The Young-L aplace Equation

The Young-Laplace equation may be derived either by miration of energy
or by summing all forces to zero. We will do both here althotiydh concept of
force in connection with surface tension may be somewhatwbs The force
approach follows the derivation of Defay and Prigogine @9énd the energy
approach is taken from the book by Landau and Lifshitz (198Ypoth cases it
is assumed that the interface is without thickness and bieainterfacial tension
is constant.

Force Balance

Consider a point P on the surface, Fig. 3, and draw a curve abstant dis-
tancep from P. This curve forms the boundary of a cap for which we Idirad
the equilibrium condition ag tends to zero.

Through P we draw the two principal curvature sections AB @bidon the
surface. Their radii of curvature at P dRg andRy. At the point A, an elemert

9



Figure 3: Equilibrium of a nonspherical cap.

of the boundary line is subjected to a forc& whose projection along the normal
PN is P
oél sing ~ o¢psl = o —4l,
Ro

since¢ by assumption is small.
If we consider four elementl of the periphery at A, B, C, and D, they will

contribute with a force
2006l ! + 1
o e e .
P R R

Since this expression by Euler’s theorem, Eq. 10, is indégenof the choice of
AB and CD, it can be integrated around the circumferenceceSiour orthogonal
elements are considered, the integration is made over ar¢equf a revolution

to give
npo i + i
Po\R T RJ)

The force on the surface element caused by the pressuneditizover the surface
is given by(p1— p2)7p?, and equating the last two expressions Laplace’s equation

10



follows.

Minimum Energy

Let the surface of separation undergo an infinitesimal dshent. At each
point of the undisplaced surface we draw the normal. Thetkeafjthe segment
of the normal lying between the points where it interseatsdisplaced and undis-
placed surfaces is denoted &y. Then a volume element between the two sufaces
isécdf, wheredf is a surface element. Let and p2 be the pressures in the two
media, and leg¢ be positive if the displacement of the surface is towardsiomed
2 (say). Then the work necessary to bring about the changaume is

/(— p1+ p2)dcdf.

The total work§W in displacing the surface is obtained by adding to this the
work connected with the change in area of the surface. Thisgbahe work is
proportional to the chang#f in area of the surface, and s f, whereo is the
surface tension. Thus the total work is

SW = —/(pl — po)scdf + osf. (11)

The condition for thermodynamical equilibrium is, of coeyrthatsW be zero.

Next, letR; and R, be the principal radii of curvature at a given point of the
surface. We seR; and R, as positive if they are drawn into medium 1. Then the
elements of length (the arc differentiatsy; andds, on the surface in its principal
curvature sections are increased® + 6¢)ds; /Ry and(Ry + §¢)ds/ Ry when
the anglesis;/R; andds/ R, remain constant, i.e., an expansion normal to the
surface (s is the arc length of a circle with radiu®;, and correspondingly for
ds). Hence the surface elemeaht = ds;ds, becomes, after displacement,

dsi(1+46¢/R)ds(l+65/Re) = dsids(1+85/Ri+80/Ro),

i.e. itchanges by¢df(1/R; 4+ 1/R2). Hence we see that the total change in area
of the surface of separation is

5f =/5; (Ri1+Ri2>df. (12)

Substituting these expressions in Eq. 11 and equating ¢ &erobtain the equi-
librium condition in the form

1 1
/5§{(p1—p2)—0<ﬁl+ﬁz)}df:0
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This condition must hold for every infinitesimal displaceref the surface, i.e.
for all §¢. Hence the expression in braces must be identically equadrm and
Young-Laplace’s equation follows.

Space curves by linear algebra

Figure 4: Surface in space.

We assume the space surface defined by f (x, y) to besmooth(Shifrin, 2013).
A Taylor expansion around a poid, b) gives an approximation to the surface
around(a, b),

af (a, b) af (a, b)

f(x,y)= f(a,b) + % (Xx—a)+ 3y (y—b)+
1[8%f (a, b) , 9%f(a, b) )
Z[T(X_a) +87y2(y_b) +
92f(a, b) 92f(a, b)
W(X —a)(y —b) + ByT(y —b)(x — a)] + . (13)

A new coordinate systerfXY 2) is now introduced with origin ir{a, b) and
the (XY) plane defined as the tangent plane to the surfac¢a &p. This gives

0,00 = 0,
9f (0,00
o = O (14)
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af (0, 0)
Y

0.

Since the surface is smooth, the order of differentiati@mlgtrary, and the crossterms
may be added to render

2 2 2
Z-f(XY) ~ 2[00, 7100, 07100, ]
2! X2 9Y2 IX9Y
1
= = [fxxx2+ fyyY2+2fXny]_
2
This may be reformulated as the matrix product
1 fxx fxv X
fFIX,Y)~=( X Y . 15
0 2( )<fxv fyy Y (15)

The 2x 2 matrix in Eq. 15 formed by the partial derivativesfofs symmetrical,
the matrix can be diagonalized with orthogonal eigenveadtdoward, 1984), and
the surface may be approximated by the matrix product

1
fX Y ~gEm = 5(& m(g 2)(?7)
_ 1l 15

Here& andn are the coordinates along the new unit vectors anghd 8 the
corresponding eigenvalues. This is equivalent to a ratadifothe tangent plane
around theZ-axis with the two new unit vectord 0)! and(0 1)! in the (£n)-
plane.

In the (Z&)-plane (n = 0), the functiong(é, 0) in Eg. 16 will form the
parabola

1
Z =9 0) = ja&”. (17)
Approximating the parabola with a circle of radiRs, we get
E+(Z-R) = R,
§24+22-2ZR,+R: = R,
£24+ 72 - 2ZR, 0, (18)
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and solved with respect o,

Z = R,+,/R2-¢&2

Selecting the minus sign and deleting higher order termsamree a the simple
expresson

52
Z =~ R (29)
By comparing Eq. 17 and Eq. 19 we find
, ot _ &
2 2R,
and
1
Re == (20)
o

The curvaturec of a space curve at a point [Reference to part | definitions] is
defined as the inverse of the radius of curvature at the poh#.curvature of the
parabolaZ = g(¢, 0) is therefore

1
K=o =—.
Re
Considering instead th€Zn)-plane(¢ = 0), the curvature of the parabola =
g(0, n) is given by

1

K:,B:?ﬁ

A arbitrary plane normal to the tangent plane at the p@nb) [Reference to part
| definitions] will cut the tangent plan&n) along a straight lin¢ : &€ = Kp
whereK is a constant as shown i Fig. 5 The distandeetween the pointa, b)

14
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Figure 5: Arbitrary lind through pointa, b) in the tangent plane.

and a point¢, n) onl may then be expressed by
22 = EP 4
— K22 42
— (K2 + 1) 2. 1)
Solved with respect tg? we get
2 W
K241

The cut of the normal plane and the surfdag, n) is then

n (22)

1 1
fE,n) = §a§2+§ﬁn2,

1 1
~aK2n2 4+ =g,
2a 7 2'877

1 [ K22 +1ﬁ 22
= — —
2°\K24+1) " 2"\ K24+1)’
1 K2 1 )
= 2 A2, 23
2{K2+1a+K2+1ﬁ] (23)

The curvature of the space curve defined by the cut betweendimeal plane
touching the surface ida, b) and the surfacd (¢, n) is then, as shown above,

15



given by ,

K 1
“kei1tkesd? (24)
The expression for the curvature is a weigthed average beetwend 3. The
value ofk1 lies betweernx andg, i.e., between the largest and the smallest curva-
ture. Hence the two normal planes containing the space eutkighe largest and
smallest curvature are normal to each other. These two sp&aees are called the
principal curves.

A normal plane that cuts the tangent plane along thedine Kn will cut
the surface along a curve on the surface, the normal sed@entp part I] with
curvaturex;. Another normal plane that is normal to the first one will dug t
tangent plane in the ling = —»/K and have a normal section with curvature

k1

__ . K2
TkK2r1Y K211

Adding the two curvatures from Egs. 24 and 25, vi get

k2

B. (25)

K14 k2 = o + B. (26)
The sum of the curvatures of two normal sections in planes rsmal to each
other is constant and equal to the sum of the curvatures gfrtheipal curves.
Surface energy and the Young-L aplace equation

We now consider the surface between two phases to be infagidisplaced
by §¢. The volume element between the two surfacek isd Swhered Sis the
surface element. Ld?; and P, denote the pressures in the two phases. The work
done by the volume change is

SWp = / (—=P1+ P2)s¢dS 27)
The total work of the displacement also includes the workhafiging the surface

area bys Sand is given by
SW, = 08S, (28)

whereo is the surface tension. And the total work is

SW = / (P, — P)8cdS+ 08S, (29)
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Figure 6: Displaced surface between two phases.

At thermodynamic equilibrium this work is equal to zero.
It remains to express the surface area cha®je

§S=dS —ds (30)

in terms of the displaceme#dt and the curvatures of the principal normal sec-
tions, YRy and Y/ R,. The surface areas before and after the displacerdéhnt,
andd S, respectively, are equal to the product of the length elésnalong the
principal normal sections since, as shown earlier, the abs@ctions are normal
to each other. Then,
dS = dlidly,
dS = dlidl;, (32)
wheredly, dl; anddl}, dl are the length elements long the principal normal
sections before and after the displacement, respectiValy.length elementdiy
anddl; may be written as
dlys = Ruby,
dif = (Ri+80)6u,

17



whereé; is the angle shown in Fig. 6. Then

d|§_ _ R1+3§'
dly Ry
8¢

= 1+ =
—|—Rl

Similar expressions are valid fall, anddl;. We substitute fodl] anddl; in
Eq. 31 and get

ds = didl,

_ 3_5 8_5
= (1+ l)dll (1+ 2) dlo,
_ 8_5 3_5

8¢ 8¢ 8¢2
= dS(1+ =+ = ,
( JrR1+F32+R1R2

~ dS(1+ % + 5—§) ,  sincesc? < RiRy. (32)
Ri R
If this expression is substituted into Eqg. 30 we get
§S = dS—-dS
_ 8¢ 8¢
= dS(l-l— Re + R2> ds
_ 8¢ | 8¢
= dS(Rl + Rz)' (33)

This expression is inserted f66in Eq. 29 to give

W = /(Pz— P1)5{ds+/d(i+i>5§ds
Ri R

1 1
= [{Rre (g m) s
= 0, foralle éc¢, (34)

whereP; = P; — Py is the capillary pressure. Then, according to the fundaatent
lemma of calculus of variations Papatzacos (1989),

P+(l+1) 0
_ o(— —) =0,
¢ Ri R

18



and rearranged we get

1 1
Pe = —+ =, 35
(o U(Rl+ Rg) (35)

which is the Young-Laplace equation.

Nomenclature

[a,b] = interval
EI\';E = parameters defined by Eqg. 5.
f = area, M
K = curvature, m?!
L = arclength, m
dl1, dlo = length elements, m
dlf, dl5 = length elements, m
p = pressure, Pa
R = radius of curvature, m
Ri1, R = principal radii of curvature, m
s = arc length parameter, m
t = parameter, dimensionless
u = parameter, dimensionless
v = parameter, dimensionless
(X,y,2z) = Cartesian coordinates

W = work, J

angle, radians

differential operator
infinitesimal displacement of surfaces, m
surface tension, N/m

angle, radians

length element along normal, m
function of (u, v)

function of (u, v)

function of (u, v)

radius of cap, m

= angle, radians

>
Y~ o R
1 O 1 1 I 1 I

SDTXRS|s N A
I
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Subscripts

c = capillary
u = partial derivative with respect to
v = partial derivative with respect o
a = constant
I' = adsorption (kg surfactant/kg rock)
y = interfacial tension, N/m

Vectors
f = vector function, m
r = radius vector, m
t = tangent vector, dim.less

I,J, k = unitvectors, dim.less

h = principal normal to a curve, dim.less
n = surface normal, dim.less
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