
Asynchronous Reconfiguration for Paxos State
Machines

Leander Jehl and Hein Meling

Department of Electrical Engineering and Computer Science
University of Stavanger, Norway

Abstract. This paper addresses reconfiguration of a Replicated State
Machine (RSM) in an asynchronous system. It is well known that consen-
sus cannot be solved in an asynchronous system. Therefore an RSM pro-
viding strong consistency, cannot guarantee progress in an asynchronous
system. However, we show that reconfiguring the RSM is possible in a
purely asynchronous system. This differs from all existing reconfiguration
methods which rely on consensus to choose a new configuration. Since a
reconfiguration to a new set of machines or even a different datacenter
can serve to restore synchrony between replicas, asynchronous reconfig-
uration can also serve to increase the availability of an RSM.

1 Introduction

State machine replication [1] is a common approach for building fault-tolerant
services. In this approach, all service replicas of the state machine execute the
same requests. To ensure that replicas remain consistent after multiple updates,
the order of requests has to be synchronized across replicas. Typically this is ac-
complished using a consensus protocol, such as Paxos [2, 3], which is an essential
component in a Replicated State Machine (RSM). Paxos helps to prevent the
replicas from entering an inconsistent state, despite any number of replica fail-
ures. Moreover, the RSM can continue to process new requests, as long as more
than half of the replicas remain operational. If this bound is violated, however,
the current RSM is forced to stop making progress indefinitely. Therefore real
systems need to be able to react to failures and include new replicas, before this
bound is exceeded. Additionally, in todays cloud computing infrastructures, a
fault tolerant, replicated service should be able to add, or move replicas based on
the systems load and redistribute the replicas to new physical locations. There-
fore real systems should include a reconfiguration method, ensuring a continuous
correct service while enabling the changes above.

The initial descriptions of the state machine approach [1] and Paxos [2, 3]
described a reconfiguration method. This method lets the RSM reconfigure itself
by executing a special command, which specifies the new configuration. It was
refined and implemented, e.g. for the Zookeeper service [4], enabling reconfigu-
ration for a replicated system in production.



To use this method however, the old configuration (being changed) must
be operational to complete the reconfiguration command. Thus the old config-
uration needs to have a single leader and a majority of correct servers, to use
reconfiguration. Vertical Paxos [5] developed a different reconfiguration method,
showing that reconfiguration is possible with only a minority of correct replicas,
if it is coordinated by an abstract, fault tolerant configuration manager. In Ver-
tical Paxos, synchrony is needed to guarantee a working configuration manager.

In this paper we target the synchrony assumption of traditional reconfigura-
tion. We present ARec, an asynchronous reconfiguration protocol, showing that
reconfiguration is possible in an asynchronous system. This means that, agreeing
on a single leader is not necessary to change to a new set of replicas. Reconfig-
uring an RSM can therefore take place during a period of asynchrony, e.g. when
clocks are not synchronized and the network introduces unpredictable delays.
This is an important result, because it means that replicas could be moved to a
set of machines or a datacenter where synchrony assumptions hold.

1.1 ARec: Reconfiguration without Consensus

A configuration is a set of replicas running on different machines. To change the
set of replicas, a reconfiguration simply proposes a new configuration. We assume
that any two configurations are disjoint. Thus every replica belongs to exactly
one configuration. However we do not require replicas of different configurations
to run on different machines. Thus reconfiguration also enables operations like
adding or removing one replica. For example, to add a replica to the configuration
{r1, r2, r3}, running on machines m1,m2, and m3, one simply proposes a new
configuration {r′1, r′2, r′3, r4} on machines m1,m2,m3, and m4. Thus our recon-
figuration allows all possible changes both in number and placement of replicas.

The main challenges in reconfiguration are to ensure that when stopping
the old configuration, exactly one new configuration starts and that all requests
that have been committed by the old, stay committed in the new configuration.
Assume for example two new configurations C1 and C2 are proposed, while
an initial configuration C0 is running the RSM. Classical reconfiguration uses
consensus in one configuration to choose the next configuration. Thus replicas
in C0 would choose whether to change to C1 or C2. Thus, the new configuration
that is chosen can then simply copy the state from C0.

Since consensus is impossible in an asynchronous system [6], ARec uses even-
tual consistency to determine the next configuration. For this, we assume that
new configurations are issued together with a unique timestamp. If several con-
figurations are proposed concurrently, we let the one with the highest timestamp
be the next configuration. Thus, if the replicas eventually become aware of all
configurations, they will agree on which configuration should take over.

However this complicates state transfer, since it is difficult to determine which
configuration can transfer a correct state to the new configuration. Assume for
example C1 and C2 have timestamps 1 and 2. In this case, we can ignore C1

and C2 can receive the state from C0. However if C2 is only proposed after C1



received the state from C0 and started the RSM, C2 has to copy its state from
C1. This problem is solved in Section 4.

Another problem in asynchronous reconfiguration is to find a correct state for
the new configuration to start. In classical reconfiguration, the old configuration
again uses consensus to decide on the last request. Any replica can then tell
this decision to the new configuration, which can choose new requests. In an
asynchronous system, the old configuration cannot decide on a final request.
Thus, some requests might be committed in the old configuration but remain
unknown to some replicas. ARec therefore collects the state of a majority of
a configuration’s replicas, to determine the new configuration’s state. Luckily
leader change in Paxos already includes a mechanism to find any value, that
might be committed.We reuse this mechanism in ARec.

2 Paxos

In this section we briefly present Paxos [2, 3] and how replicas agree on a single
request. We then elaborate on how this is used to implement an RSM.

2.1 Paxos

Paxos is a consensus algorithm used by several participants (our replicas) to
decide on exactly one value (our request). To get chosen, a value has to be pro-
posed by a leader and accepted by a majority of the replicas. Only one value
may be chosen and every correct replica should be able to learn what was de-
cided on. Paxos assumes a partially synchronous network, tolerating asynchrony,
but relying on eventual synchrony to guarantee progress. That means that single
messages can be lost or arbitrarily delayed (asynchrony). However, eventually all
messages between correct processes arrive within some fixed delay (synchrony).
Since an initial leader might fail and a single leader cannot be chosen during
periods of asynchrony, multiple leaders can try concurrently to get their val-
ues decided. To coordinate concurrent proposals, leaders use preassigned round
numbers for their proposals. Replicas cooperate only with the leader using the
highest round. However, after leader failure it might be necessary for replicas
to cooperate with several leaders. Paxos solves this problem by enforcing that,
once a value has been decided, leaders of higher rounds will also propose this
locked-in value. Therefore in the first phase of a round, the leader determines if
it is safe to propose any value or if there is another value that was already voted
for. In the second phase, the leader then tries to get a safe value accepted. If not
interrupted a round proceeds as follows:

Prepare (1a) The leader sends a Prepare message to all replicas, starting a
new round.

Promise (1b) Replicas return a Promise not to vote in lower rounds, and
include their last vote.

Accept (2a) After receiving a quorum of Promise messages, the leader deter-
mines a safe value and proposes it to all replicas in an Accept message.



Learn (2b) Replicas vote for the proposal, by sending the value and round
number in a Learn message to all other replicas, if no higher round was
started in the meantime.

Decide Receiving a quorum of Learns for one value and round, a replica
decides on that value.

A quorum is a majority of the replicas and a quorum of messages is a set of
messages of the same type, sent by a quorum in the same round. A value v is
chosen if a quorum of Learn messages with value v was sent. The Decide step
above ensures that only chosen values get learned.The above can be repeated in
new rounds, until all replicas have learned the value. From a quorum of Promise
messages, safe values can be determined following these rules:

– If no replica reports a vote, all values are safe.
– If some replica reports a vote in round r for value v and no replica reports

a vote in a round higher than r, then v is safe.

These rules ensure, that once a value is chosen, only this value is safe in higher
rounds. Thus all replicas learn the same value, even if they learn it in different
rounds. We call this property safety . Clearly to be able to report their votes in a
later Promise message, replicas have to store their last vote (round and value)
in variables vrnd and vval. For a replica to be able to promise not to vote in
lower rounds, it must also store the last round it participated in. We refer to this
as rnd. These variables are all that is needed to ensure safety . We call them the
Paxos State of a replica. We also write Φ for the tuple (rnd, vrnd, vval).

We say that an execution of Paxos is live if a value can get learned. For
Paxos to be live, a leader has to finish a round, communicating with a quorum
of correct replicas, while no other leader starts a higher round.

2.2 The Paxos State Machine

A state machine is an application that, given a state and a request, deterministi-
cally computes a new state and possibly a reply to the request. When this state
machine is replicated for fault tolerance, it is important that the replicas execute
the same requests to maintain a consistent state among themselves. Since sev-
eral requests might interfere with each other, it is also important that replicas
execute requests in the same order.

The replicas in a Paxos State Machine achieve this by using Paxos to choose
requests. For every new request, a new Paxos instance is started. Its messages
are tagged with a request number i, saying that this instance is choosing the
ith request. A replica only executes the ith request, if it has executed request
i − 1 and has learned the request chosen for the ith instance via the Paxos
protocol. Thus, as long as Paxos is live, new request can be processed. These
will eventually be learned and executed by all correct replicas.

Though execution has to be done in correct order, the Paxos instances can
be performed concurrently. Thus it is possible to propose and choose a request
in instance i+ 1, without waiting for the ith request to be learned.



Note that, if concurrent Paxos instance have the same leader, round change
can be common for all instances. Thus, Prepare and Promise messages for
concurrent Paxos instances can be sent in the same message. [3] explains how
this is done, even for all future instances.

3 Liveness for a Dynamic RSM

In this section, we define the problem of asynchronous reconfiguration. That
is, we both define the interface used to issue reconfigurations and specify the
liveness conditions for a Dynamic RSM and ARec.

A reconfiguration is initialized by sending 〈Reconf, Ci, i, Cl〉 to the new
configuration Ci. Here, i is the unique timestamp of the new configuration and
Cl is some old configuration. The old configuration is needed, since the new
configuration needs to contact the service to take over. We require configurations
to be disjoint. Thus a replica only belongs to a single configuration. However
replicas from different configurations can easily be placed on the same machine.
Note that a Reconf request will typically be sent by a replica in configuration
Cl that wants to move the service, e.g. in response to asynchrony or crashes. It
can also be sent by an external configuration manager.

We say a configuration is available, if a majority of the configuration’s repli-
cas are correct. A static Paxos state machine is guaranteed to process incoming
requests, if the initial configuration is available and eventually a single leader is
elected. In a dynamic system, this condition becomes more complicated. While a
reconfiguration might require several old and new configurations to be available,
a dynamic system should not require an old configuration to remain available
after a new configuration has taken over and copied all relevant state. We say
that a replica in a new configuration is stateful, if it has copied a correct system
state from a previous configuration. Note that this system state might differ
from the individual states of single replicas in the old configuration. We define
a configuration to be stateful, when a majority of the replicas in this configura-
tion are stateful. Thus, if a configuration is stateful and available, there exists
a correct and stateful replica that can disseminate a correct system state to the
other correct replicas. Clearly, a Dynamic RSM always needs at least one avail-
able stateful configuration. Also, new configurations must stay available during
reconfiguration. We therefore define that a Dynamic RSM, at any time in an
execution, depends on the stateful configuration with highest timestamp, Cmax,
and all configurations with higher timestamps. We can now define liveness of
reconfiguration as the following:

Definition 1 (ARec Liveness). For any execution, if
(a) at all times the configurations that the system depends on are available, and
(b) 〈Reconf, Ci, i, Cl〉 is sent by a correct client for a stateful configuration Cl,
then the system will eventually no longer depend on Cl.

Note that ARec Liveness does not guarantee that the state machine actually
makes progress. That is because this always requires some synchrony assumption.



Similar, ARec Liveness does not guarantee, that 〈Reconf, Ci, i, Cl〉 actually re-
sults in Ci running Paxos. That makes sense, since in the case of concurrent
reconfigurations, we don’t want several configurations to start. However it guar-
antees that Cl will stop running Paxos, and replicas in Cl need not stay available.
Clearly implementing ARec Liveness makes sense only if also the state machine
is live, under reasonable assumptions. We therefore define the following:

Definition 2 (Dynamic RSM Liveness). For any execution, if
(a) at all times the configurations that the system depends on are available,
(b) only finitely many configurations are initialized, and
(c) eventually a single leader is elected in Cmax,
then requests submitted to this leader will be processed.

Note that synchrony between processes in Cmax is needed to guarantee (c).
(b) says that eventually no more reconfigurations are issued. This guarantees
that eventually, one configuration will be Cmax forever. This configuration can
run Paxos without being interrupted by reconfigurations. Since it is impossible
to agree on group membership in an asynchronous system [7], it can be theo-
retically challenging to guarantee condition (b). For example, if reconfiguration
is used to replace faulty replicas with new ones, false detections might cause
infinitely many reconfigurations, even with only finitely many crashes. This is
because in an asynchronous system, a failure detector might falsely detect a
crash, causing a reconfiguration, in which a correct replica is replaced by a new
one. In practice however, the number of reconfigurations are typically bounded
because of their cost. That is, reconfiguration usually requires new machines,
possibly transferring large amounts of state between replicas, and may also dis-
rupt service delivery.

4 Asynchronous Reconfiguration

We now explain our reconfiguration protocol ARec and argue for its correct-
ness using examples. See Algorithm 1 on Page 7 for details. We assume reliable
communication but specify later how to reduce retransmissions. Proof of cor-
rectness is given in the following sections. We first assume that only a single
instance of Paxos is reconfigured and later explain how this can be extended to
an RSM. ARec maintains safety of Paxos by ensuring that at any time, at most
one configuration is running Paxos, and that this configuration copies the Paxos
State from a previous configuration, upon start-up. To achieve this, the Paxos
messages are tagged with the senders configuration, and a receiver only delivers
Paxos messages from its own configuration. We write Ci for the configuration
with timestamp i. We define a quorum of messages from Cj as a set of messages
from a majority of the replicas in configuration Cj .

A Single Reconfiguration: As specified before, a new configuration Ci is initial-
ized by sending 〈Reconf, Ci, i, Cl〉, where Cl is some earlier configuration. The
new replicas broadcast this message to their configuration to make sure that



Algorithm 1 Asynchronous Reconfiguration

1: State:
2: MyC {This replica’s configuration}
3: MyC.ts {My configuration’s timestamp}
4: Older {Older configurations}
5: Newer {Newer configurations}
6: P := ∅ {Promises}
7: Φ := ⊥ {Paxos State: (rnd, vrnd, vval)}
8: stateful := False {stateful = True⇔ Φ 6= ⊥}
9: valid := True {valid = True⇔ Newer = ∅}

10: upon 〈Reconf, Ci, i, Cl〉 with l < i and Cl stateful {On all replicas in Ci}
11: MyC := Ci {Start this replica in Ci}
12: MyC.ts := i
13: send 〈Reconf, Ci, i, Cl〉 to MyC {Make sure all received Reconf }
14: Older := {Cl}
15: send 〈NewConf, Ci〉 to Cl

16: upon 〈NewConf, Cj〉 with j > MyC.ts {A newer configuration exists}
17: if valid and stateful then
18: stop Paxos
19: Φ := (rnd, vrnd, vval) {Get state from Paxos}
20: valid := False
21: Newer := Newer ∪ {Cj}
22: send 〈CPromise, Φ,Newer,MyC〉 to Cj

23: upon 〈CPromise, Φ′,Confs, ID,C〉 when not stateful
24: P := P ∪ {Φ′,Confs, ID,C}
25: oldC := {Cj ∈ Confs|j < MyC.ts}
26: newC := {Cj ∈ Confs|j > MyC.ts}
27: if newC 6⊂ Newer then {newC already known?}
28: Newer := Newer ∪ newC
29: valid := False
30: if ∃Q ⊂ P ;Q is stateful valid Quorum then {See Definition 3}
31: Φ := findState(Q) {See Algorithm 3}
32: stateful := True
33: send 〈Activation, Φ,Newer〉 to MyC {Optimization: See Algorithm 2}
34: if valid then
35: start Paxos with Φ in MyC
36: else
37: send 〈CPromise, Φ,Newer,MyC〉 to Ct ∈ newC
38: else if Φ′ 6= ⊥ and oldC 6⊂ Older then {CPromise stateful and not valid?}
39: Older := Older ∪ oldC
40: send 〈NewConf,MyC〉 to oldC {Ask other configurations}

all correct replicas in Ci receive it. (See Lines 10 and 13 in Algorithm 1.) A
replica from Ci then informs the replicas in Cl about the reconfiguration, send-
ing 〈NewConf, Ci〉 (Line 15). Upon receiving this message, replicas in Cl stop
running Paxos, retrieve their local Paxos State Φ and send it in a Configuration-



Algorithm 2 Asynchronous Reconfiguration (Continued)

40: upon 〈Activation, Φ′,Confs〉 when not stateful {From replica in MyC}
41: Φ := Φ′

42: stateful := True
43: Newer := Newer ∪ Confs
44: send 〈Activation, Φ,Newer〉 to MyC {Activate other replicas in MyC}
45: if Newer = ∅ then {I’m the newest conf.}
46: start Paxos with Φ in MyC
47: else {There’s a newer conf.}
48: valid := False
49: send 〈CPromise, Φ,Newer,MyC〉 to Newer

Promise 〈CPromise, Φ,Confs, Cl〉 to the replicas in Ci, including all known
configurations with timestamp larger than l in Confs (Lines 18-22). The replicas
in Cl store the new configuration Ci in the set Newer and include it in all future
CPromises (Line 21).

Upon receiving a quorum Q of CPromises from Cl with empty Confs fields,
the replicas in Ci can determine a Paxos State as explained in Algorithm 3.
This corresponds to the processing of Promise messages in Paxos. rnd is set
to a higher value than any one reported in Q, vrnd is set to the highest value
reported in Q and vval to the value, reported in vrnd. Paxos is then started
with a new round, where the leader sends out Prepare messages. We say that
a replica is stateful, after it has determined a Paxos State (rnd, vrnd, vval) (See
Lines 31,32). This matches the notion of statefulness, introduced in Section 3.

Concurrent Reconfigurations: When several configurations are initialized con-
currently, we have to ensure that exactly one of them starts running Paxos. To
do this, a replica keeps track of the new configurations it has seen, using the set
Newer, and includes it in CPromises (Lines 21, 22). Thus, for any two concur-
rent reconfigurations, at least one will know about the other. To prevent several
new configurations from starting Paxos simultaneously, a new replica remem-
bers the configurations included in CPromises (Lines 28, 39). If a replica knows
about a configuration with higher timestamp, it will consider itself not valid
(Lines 9, 29), and therefore will not start running Paxos (Lines 34, 35). Further,
if a new replica receives a CPromise, informing it about another configuration
with lower timestamp, it will also ask this configuration for CPromises (Lines 25
and 38-40). To make sure a new replica receives its state from the latest stateful
configuration, we require a stateful valid quorum to determine a correct state
(Lines 30-31). A stateful valid quorum is defined as follows:

Definition 3. A set Q of CPromises sent from a majority of the replicas in
Ci to a replica in Cj, is a stateful valid quorum from Ci, if

(1) all messages contain a Paxos State, that is Φ 6= ⊥,
(2) and if for any configuration Ct, included in the Confs field of a CPromise

in Q, t ≥ j holds.



Algorithm 3 Procedure to find the highest Paxos state in Q

1: Input:
2: MyC.ts {This configurations timestamp}
3: Q = {(Φ,Confs, ID,C), . . .} {CPromises with Φ = (rnd, vrnd, vval)}

{and ∀Ci ∈ Confs : i ≥MyC.ts}

4: procedure findState(Q)
5: rnd := maxrnd ∈ Q+ 1 {Highest rnd from Paxos states, Φ, in Q}
6: vrnd := maxvrnd ∈ Q {Highest vrnd from Paxos states, Φ, in Q}
7: vval := vval(vrnd) {vval reported with vrnd}
8: return (rnd, vrnd, vval)

Note that a CPromise is stateful, if and only if it was sent by a stateful
replica. The following example shows how our algorithm ensures that only one
of two configurations starts running Paxos.

Example 1. Assume an initial stateful configuration C0 with replicas x, y, and
z. Assume two new configurations C1 and C2 are initialized. If C2 receives a
stateful valid quorum of CPromises from x and y, and starts Paxos, then x
and y received the NewConf message from C2 before the one from C1. They
will include C2 in their CPromises to C1. C1 will therefore never start running
Paxos.

This next example shows, how stateful valid quorums guarantee that a new
configuration gets its Paxos State from the last stateful configuration.

Example 2. Assume as above an initial configuration C0 and concurrently ini-
tialized configurations C1 and C2. Assume C1 received an stateful valid quorum
of CPromises from C0 and started running Paxos.

Thus, the replicas in C0 will inform C2 about C1 in there CPromises, and
because of condition (2), the CPromises from C0 to C2 will not make a stateful
valid quorum. Therefore C2 will ask C1 for CPromises. The replicas in C1

will either directly reply to C2 with a statefulCPromise, or send it, after they
determined a Paxos State (Lines 22, 37 and 49).

Optimizations: Algorithm 1 assumes that all replicas in a new configuration
are initialized with a Reconf message. And all send NewConf messages and
receive CPromises. However, if one replica has determined a Paxos State, the
others can simply copy it, instead of waiting for a quorum of CPromises. Thus,
after a replica has determined a correct Paxos State using Algorithm 3, it sends
this state to all replicas in its configuration, using an Activation message
(Line 33). Other replicas can just copy this state, instead of waiting for a quorum
of CPromises as explained in Algorithm 2. To reduce the message load, pro-
cesses in the new configuration can further run a weak leader election algorithm
and only the leader would send NewConf messages and receive CPromises.



The other replicas can then be started by an Activation message. Note that
we do not require a single leader to emerge. It is only needed that eventually one
or several correct leaders are elected. 1 Finally, since we assume reliable com-
munication, messages have to be resent until an acknowledgement is received.
In an asynchronous system, this means that messages to faulty processes have
to be sent infinitely often. However, NewConf and CPromise messages must
only be resent until the new configuration is stateful. The rest can be done by
Activation messages.

4.1 The ARec State Machine.

Just as Prepare and Promise messages in Paxos, we can send NewConf
and CPromise messages for infinitely many instances of Paxos at the same
time, since the Paxos State will be the initial state (Φ = (0, 0,nil)), for all
except finitely many instances. However it is unpractical to replay all requests
of an execution history on the new configuration. A more practical solution is
to provide a snapshot of the replicated application to the new replicas when
invoking Reconf. If this snapshot incorporates all requests chosen in the first k
Paxos instances, it is enough to exchange NewConf and CPromise messages
for the Paxos instances starting with k + 1.

While in undecided instances a new configuration needs to receive a quorum
of Paxos States, in a decided instance, it would suffice to receive the decided
value from one replica. This can be used to further reduce the size of CPromise
messages in an implementation.

5 Safety of the RSM

We now prove that RSM safety cannot be compromised by ARec. That is, only
a single value can get chosen in a Paxos instance, even if the instance runs over
several configurations. Proving safety for Paxos usually relies on the condition
that any two quorums intersect [3]. However, this condition does not hold in a
dynamic system. We derive a substitute for this condition in Corollary 1.

Recall that a replica is stateful if it has Paxos State and valid if it does not
know of any configuration higher than its own (Lines 8 and 9). A message is
stateful or valid iff its sender is.

According to Algorithm 1, a replica only starts Paxos when it is stateful and
valid (Lines 32-35 and 42-46), and stops Paxos when it becomes invalid (Lines 16-
18). A stateful replica always stays stateful. Thus, the sender of a Paxos message
is always stateful and valid. We can therefore define all quorums of Promise or
Learn messages to be stateful valid quorums, analogue to Definition 3.

Since two quorums do not necessarily intersect, we define the following prop-
erty to describe that one quorum knows about another quorum.

1 This leader election is strictly weaker than the one required for Paxos [8]. In this case,
a failure detector suspecting everybody forever, and therefore electing all replicas as
leaders gives an inefficient but correct solution.



Definition 4. For two stateful valid quorums of messages, Q and Q′, we say
that Q′ knows Q, writing Q 7→ Q′, if

(1) Q is a quorum of Paxos messages, and some replica first sent a message in
Q and then a message in Q′, or

(2) Q is a stateful valid quorum of CPromises and the Paxos State of some
replica, sending a message in Q′ was derived using Algorithm 3 on Q.

We say that Q′ knows about Q, writing Q 99K Q′, if there exist k stateful valid
quorums Q1, . . . , Qk, such that Q 7→ Q1 7→ . . . 7→ Qk 7→ Q′.

Note that, condition (2) applies both, if a replica in Q′ called findState(Q),
or if it received a Activation message including Φ = findState(Q).

In Lemma 1 we show how this notion is related to Paxos variables rnd and
vrnd. We therefore first define the rnd and vrnd of a stateful valid quorum.
Note that a stateful valid quorum from Ci, can either be a quorum of Learn or
Promise messages sent in the same round, or a quorum of stateful CPromises
from Ci.

Definition 5. For a stateful valid quorum of messages Q we define:

rnd(Q) =

{
rnd msgs were send for Learns and Promises

maxrnd for CPromises

vrnd(Q) =


rnd msgs were send for Learns

maxvrnd for Promises

maxvrnd for CPromises

Where maxrnd and maxvrnd refer to the highest rnd and vrnd reported in the
messages.

Lemma 1. Let Q and Q′ be stateful valid quorums from Ci and Cj.
(1) If Q 7→ Q′ and i = j, then rnd(Q) ≤ rnd(Q′).
(2) If Q 7→ Q′ and i < j, then rnd(Q) < rnd(Q′) and vrnd(Q) ≤ vrnd(Q′).
(3) If Q 7→ Q′, and Q are Learns, then vrnd(Q) ≤ vrnd(Q′) holds.

Proof. Using the following facts, all cases easily follow from the definitions. In
cases (1) and (3) of the Lemma, Q 7→ Q′ is caused by case (1) in Definition 4. The
claims easily follow, since Q and Q′ have a sender in common. In case (2) of the
Lemma, Q is a quorum of CPromises and case (2) of the Definition 4 holds. The
claim follows, since (rnd, vrnd, vval) = findState(Q) implies rnd = rnd(Q) + 1
and vrnd = vrnd(Q). (Compare Algorithm 3 and Definition 5.) ut

Lemma 2. For two quorums of Paxos messages Q in Ci and Q′ in Cj, if i < j
then Q 99K Q′. Further, we can choose all quorums Q1, . . . , Qk to be quorums of
CPromises and Q 7→ Q1 7→ . . . 7→ Qk 7→ Q′ still holds.



Proof. Clearly there exist sequences Q0 7→ Q1 7→ . . . 7→ Q and Q′
0 7→ Q′

1 7→
. . . 7→ Q′ with Q0 and Q′

0 in the initial configuration C0. We want to show, that
there exists a Q′

i in Ci. Choose maximal t and t′, s.t. Qt and Q′
t′ are in the same

configuration Cu. It follows that u ≤ i, and Qt and Q′
t′ have at least one sender

in common. For u < i maximality implies that both Qt and Q′
t′ are CPromises.

Assume first Qt 7→ Q′
t′ and u < i. Let messages in Qt be sent to Cv. Thus

Cv will be included in at least one CPromise from Q′
t′ . Since Q′

t′ is a stateful
valid quorum it follows from Definition 3, that Q′

t′ was sent to a configuration
Cv′ with u < v′ ≤ v. Maximality of u implies that v′ < v. It follows similar, that
all quorums Q′

t′′ for t′′ > t′ are stateful valid quorums of CPromises send to
configurations Cv′′ with v′′ < v. This contradicts that Q′ is a valid quorum of
Paxos messages.

If we assume that Q′
t′ 7→ Qt and u < i, we similarly reach a contradiction, to

the fact that Q is a quorum of Paxos messages. It therefore follows, that u = i
and Q′

t′ is from Ci. Since Q′
t′ is still a quorum of CPromises and no replica

sends a Paxos message, after sending a CPromise, it follows that Q 7→ Q′
t′ .

This proofs the Lemma. ut

Corollary 1. For two quorums of Paxos messages, Q and P , either Q 99K P
or P 99K Q holds.

Proof. This follows from Lemma 2 if Q and P do not happen in the same config-
uration. Otherwise, it is clear since two quorums of messages in one configuration
have at least one sender in common. ut

The following corollary and theorem show that ARec preserves safety:

Corollary 2. Only a single value can be chosen in one round.

Proof. It is clear that only one value can be chosen in round r in configuration
Ci. Assume another value was chosen in round s in configuration Cj , j 6= i. Let
Qr be the quorum of Learns in round r in Ci and Qs the quorum of Learns in
round s in Cj . From Corollary 1 it follows that Qs 99K Qr or vice versa. Since
j 6= i, Qs 7→ Q1 7→ . . . 7→ Qk 7→ Qr with k > 0 and at least one quorum of
CPromises. From Lemma 1 part (1) and (2) it follows that rnd(Qs) < rnd(Qr)
or vice versa. Therefore s 6= r.

Theorem 1. If a value is safe in round r, no other value was chosen in a lower
round.

Proof. We prove this by induction over r. If r = 0, there is nothing to show.
Assume r > 0 and that the Theorem holds for all rounds smaller than r. If some
value v is safe in round r, then a quorum P of Promises showing this was send
in round r. Therefore v was also safe in round vrnd(P ). Assume some value v′

was chosen in round s < r, then a quorum Q of Learns was send in round s.
From Corollary 1 and Lemma 1 part (1) it follows that Q 99K P . If we show
that vrnd(P ) > s, we can apply the induction hypothesis on vrnd(P ) < r, and
see that v′ = v. If vrnd(P ) = s, we can apply Corollary 2 and get that v = v′.



Since Q 99K P there exist quorums Q1, . . . , Qk, such that Q 7→ Q1 7→
. . . 7→ Qk 7→ P . According to Lemma 2 we can choose all Qi to be quorums
of CPromises. Now s = vrnd(Q) ≤ vrnd(Q1) follows from Lemma 1, part
(3). And vrnd(Q1) ≤ . . . ≤ vrnd(P ) follows from Lemma 1, part (2). Thus
s = vrnd(Q) ≤ vrnd(P ) ut

6 Liveness for Reconfiguration

We now proof that ARec is live, that is that ARec Liveness and Dynamic RSM
Liveness define in Section 3 hold. We assume throughout this section, that at
any point during an execution, all configurations our system depends on are
available. Proofs of both liveness properties rely on the following Lemma:

Lemma 3. If configuration Ci is stateful and some correct replica in Ci knows
about a configuration Cj, j > i, then the system will eventually no longer depend
on Ci.

Proof. Assume the system depends on Ci. According to the definition in of the
depends on relation, the system also depends on all configurations with higher
timestamp than i. It is enough, to show that one of these configurations will
eventually become stateful. Assume therefore, that Cj is not stateful. Let c ∈ Ci

be a replica that knows about configuration Cj . c learned about Cj , either by
receiving a NewConf message from Cj (See Line 16 in Algorithm 1), or by
receiving a CPromise or Activation message including Cj (Lines 23,40). In the
later cases, c will itself send a CPromise to Cj (Lines 37,49). Since the system
depends on Cj , it is available, and will send NewConf messages to Ci either
upon initialization (Line 15), or on receiving the CPromise from c (Line 40).
Thus eventually the majority of correct replicas in Ci will send CPromises to Cj .
If these build an stateful valid quorum, Cj will become stateful and the system
will no longer depend on Ci. If the CPromises are no stateful valid quourum,
one of the senders knows about a configuration Ck with i < k < j. We can now
repeat the above arguement with Ck instead of Cj . Clearly we will eventually
arrive at a configuration Cl, such that no configuration with timestamp between
i and l exists. This configuration will become stateful and the system will no
longer depend on Ci. ut

Theorem 2. ARec implements ARec Liveness.

Proof. Assume there is a stateful configuration Cl and some correct client ini-
tialized a reconfiguration 〈Reconf, Ci, i, Cl〉. If the system does not depend on
Cl, there is nothing to show. Otherwise, both Cl and Ci are available. Since the
client is correct, eventually a correct replica in Ci will receive the Reconf mes-
sage and send a NewConf message. On recieving this message, some correct
replica in Cl will know about Ci. Lemma 3 says, that the system will eventually
no longer depend on Cl. ut

Theorem 3. ARec, together with the Paxos implement Dynamic RSM Liveness.



Proof. If, in an execution only finitely many configurations are initialized, even-
tually one configuration will forever be the stateful configuration with highest
timestamp Cmax and the system will depend on this configuration forever. Thus
Lemma 3 implies, that no correct replica in Cmax knows about a configuration
with higher timestamp. Thus all corret replicas in Cmax are valid (Line 9). Since
at least one correct replica in Cmax is stateful, it will send Activation mes-
sages, until all correct replicas in Cmax are stateful. Since Cmax is available by
assumption (a) from Dynamic RSM Liveness, it eventually holds a majority of
correct, stateful and valid replicas that will run Paxos. If additionally a single
replica is elected as a leader, Liveness of Paxos implies that submitted requests
can get learned and executed. ut

7 Related Work

As mentioned in the introduction, the classical method to reconfigure an RSM
was already explained in [1] and [2, 3]. Variations of this method where presented
in [9] and it was refined and implemented in works like [10] and [4]. All these
works use consensus to decide on the next configuration, resulting in a unique
sequence of configurations, where each reconfiguration only involves one old and
one new configuration. For this, a configuration must be available and have a
single correct leader before it can be changed by reconfiguration.

The work most closely related to ARec is Vertical Paxos [5]. Vertical Paxos
also changes configuration between rounds rather than between instances, and
uses Paxos’ first phase to deduce a starting state for the new configuration, sim-
ilar to ARec. Also similar to ARec, a new configuration Ci knows about one
past configuration Cl that is stateful and must receive a quorum from all config-
urations with sequence numbers between l and i. Different from ARec however,
Vertical Paxos assumes that upon receiving a reconfiguration request, configura-
tion Ci knows about all configurations Cj with l ≤ j < i. Finally, Vertical Paxos
relies on an abstract, fault tolerant configuration manager to order new configu-
rations. Instead of relying on synchrony in the old configuration, Vertical Paxos
relies on synchrony in the configuration manager, which must be implemented
by another RSM to be fault tolerant. Note also that the configuration manager
RSM cannot use Vertical Paxos to reconfigure itself, but has to rely on classical
reconfiguration. ARec does not rely on a separate configuration manager.

That asynchronous reconfiguration is possible has previously only been proven
for atomic R/W registers [11]. In their protocol, DynaStore, a reconfiguration
does not specify a new configuration as a set of replicas, but as a set of oper-
ations, each adding or removing one replica. When several reconfigurations are
issued concurrently, DynaStore takes the union of these reconfigurations as the
configuration that the replicas eventually agree upon. If reconfigurations are is-
sued by several parties, this interface has some disadvantages. For example, if
several parties try to reduce the number of replicas, but disagree on the replica
to be removed, they could by accident remove all replicas. Thus it is possible to



violate DynaStore’s Liveness property by issuing an “unlucky” reconfiguration.
This is not possible with ARec.

As described in [9], a Dynamic RSM has similarities to group communication
systems that provide totally ordered message delivery [12]. However, while view
synchronous communication requires that a message received by one process in
view v is received by all processes in view v, therefore consensus is required to
end a view. A Dynamic RSM ensures that requests learned by one replica in a
configuration, are learned by all replicas in some future configuration. Therefore
ARec only requires consensus in some future configuration.

8 Conclusion

We have presented ARec a reconfiguration protocol for a Paxos State Machine
that enables reconfiguration in a completely asynchronous system. To our know-
ledge this is the first protocol for asynchronous reconfiguration of an RSM. We
have precisely specified the liveness conditions for asynchronous reconfiguration,
improving on previous specifications, which allow unlucky reconfigurations to
break liveness. Using ARec, availability of RSM based systems can be improved,
since reconfiguration can be used to restore synchrony, and thus enable the
RSM to make progress. However, since our work mainly focused on proving
the possibility of asynchronous reconfiguration, we expect that ARec can be
significantly optimized when adjusting it to a specific system.

References

[1] Schneider, F.B.: Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Comput. Surv. 22(4) (December 1990) 299–319

[2] Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2) (May
1998) 133–169

[3] Lamport, L.: Paxos made simple. ACM SIGACT News (December 2001)
[4] Shraer, A., Reed, B., Malkhi, D., Junqueira, F.: Dynamic reconfiguration of

primary/backup clusters. USENIX ATC (2011)
[5] Lamport, L., Malkhi, D., Zhou, L.: Vertical paxos and primary-backup replication.

In: PODC. (2009)
[6] Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. J. ACM 32(2) (April 1985) 374–382
[7] Chandra, T.D., Hadzilacos, V., Toueg, S., Charron-Bost, B.: On the impossibility

of group membership. PODC (1996)
[8] Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed

systems. J. ACM 43 (1996) 225–267
[9] Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT News

41(1) (March 2010) 63–73
[10] Lorch, J.R., Adya, A., Bolosky, W.J., Chaiken, R., Douceur, J.R., Howell, J.: The

smart way to migrate replicated stateful services. EuroSys (2006)
[11] Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage with-

out consensus. J. ACM 58(2) (2011) 7
[12] Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: a

comprehensive study. ACM Comput. Surv. 33(4) (December 2001) 427–469


