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Abstract—We investigate methods for handling failures in
a Paxos State Machine and introduce Live Replacement,
which quickly repairs failures at a low cost. Live Replace-
ment enables a failed or disconnected replica to be replaced
with a new one, with minimal disruption. Replacement
does not rely on a special state machine command, and
need not be ordered with respect to other commands. It is
therefore independent from the state machine’s progress.
This enables Live Replacement to guarantee fast reaction
to failures with minimal effect on the state machines
operation.

I. INTRODUCTION

State machine replication [1] is a common approach for
building fault-tolerant cloud services. In this approach,
all service replicas of the state machine execute the same
requests. To ensure that replicas remain consistent after
multiple updates, the order of requests has to be syn-
chronized across replicas. Typically this is accomplished
using a consensus protocol, such as Paxos [2], [1],
which is an essential component in a Replicated State
Machine (RSM). Paxos helps to prevent the replicas
from entering an inconsistent state, despite any number
of replica failures. Moreover, the RSM can continue to
process new requests, as long as more than half of the
replicas remain operational. If this bound is violated,
however, the current RSM is forced to stop making
progress indefinitely. Such a situation would require that
complicated manual repair procedures be initiated in
order for the RSM to become operational again. To
avoid scenarios in which the number of failures exceeds
the bound, it is obviously beneficial to immediately
instantiate failure handling, if this can be done without
causing a significant disruption to request execution.

In this paper we investigate methods for immediate
failure handling in RSMs. We are interested in methods
enabling fast and efficient reaction to failure, restoring
a system’s initial fault tolerance as soon as possible,
and minimally impacting throughput and latency of state
machine requests. This is different from the traditional
approach to this problem, as presented in [1] and later
implemented in SMART [3] and Google’s Chubby Ser-
vice [4], among others. This approach tries to recover
the failed replica’s state from stable storage and restart
the replica on the same physical machine. Only if a

replica is unable to recover, e.g. due to a disk failure,
is it replaced by a new replica, using Reconfiguration.
With this approach, only infrequent reconfigurations are
necessary. Thus reduced latencies during reconfiguration
are of little concern. However, waiting for recovery leads
to long periods between failure and reestablishing the
initial level of fault tolerance.

We thoroughly review Reconfiguration with respect
to immediate failure handling and identify causes for
slow repair and reduced latencies. In response to these
defects, we introduce Replacement, a new method for
handling failures. Replacement can be used to substitute
a faulty, disconnected, or slow replica with a new one.
Compared to Reconfiguration, Replacement reduces the
impact on non-faulty replicas, since they never have to
stop to change to a new configuration. This differs from
Reconfiguration, which is often abstracted as stopping
the current state machine and restarting with a new set
of replicas, e.g. [3], [5], [6].

Our main contribution is Live Replacement, a protocol
for Replacement that provably cannot endanger the con-
sistency of the replicas. Live Replacement has the same
common case repair time as that of Reconfiguration,
while avoiding several causes for degraded performance
of the latter. This is achieved by decoupling Replacement
from the state machine’s progress.

In the next section, we define the scope and as-
sumptions for our work, and introduce two metrics to
evaluate whether a method is suitable for immediate
failure handling. In §III we give brief overview of Paxos
and state machine replication, followed by a review of
existing methods for handling failures in §IV. In §V
we derive our Live Replacement method from classic
Reconfiguration, and conclude in §VI.

II. SCOPE AND ASSUMPTIONS

To start a replica on a new machine requires additional
resources. Also if the replicated service has a large state,
which has to be transferred to the new replica, this can be
very costly. However, Paxos is frequently used to imple-
ment lightweight services such as locks or configuration
management, used to coordinate distributed applications
on a larger set of machines. Thus, we assume that



additional machines are available, and that application
state is small and can be transmitted efficiently.

As mentioned, our approach of immediate failure
handling requires reaction to a replica failure as soon
as possible, and with the least possible impact on other
replicas. We thus define the following metrics that an
efficient failure handling method should minimize:

• Delay is the time from detection of a failure until a
new replica, replacing the failed one, is participat-
ing in Paxos.

• Disruption is the additional latency state machine
requests experience during failure handling.

We do not include detection time in the Delay, since it
is a configurable parameter, depending on the specific
system, not the method.

We distinguish between two approaches to replace a
faulty replica, depending on how the new replica receives
a consistent state.

• In Reconfiguration the replicas agree on a consistent
system state and which replicas to replace. Then all
replicas, including the new one, change to that state.

• In Replacement the replicas agree on a new replica
and a state that guarantees consistency of the whole
system. Only the new replica adopts this state, while
the other replicas continue as before.

Since we are interested in immediate failure handling, we
do not consider the possibility for a replica to recover
from failure by rebooting from stable storage.

III. PAXOS AND STATE MACHINE REPLICATION

RSM-based systems using Paxos have been intently
studied over the last decade and numerous industrial-
strength systems have been implemented, e.g. [4], [3],
[7]. In this section we briefly present Paxos [2], [1] and
how replicas agree on a single request. We then elaborate
on how this is used to implement a RSM.

A. Paxos

Paxos is a consensus algorithm and can be used by
several participants (our replicas) to decide on exactly
one value (our request). To get chosen, a value has to be
proposed by a leader and accepted by a majority of the
replicas. Only one value should be chosen and every non-
faulty replica should be able to learn what was decided
on. Paxos assumes a partially synchronous network,
tolerating asynchrony, but relying on eventual synchrony
to guarantee progress. That means that single messages
can be lost or arbitrarily delayed (asynchrony). However,
eventually all messages between non-faulty processes
arrive within some fixed delay (synchrony). Since an
initial leader might fail and a single leader cannot be
chosen during periods of asynchrony, multiple leaders
can try concurrently to get their values decided. To
coordinate concurrent proposals, leaders use preassigned

round numbers for their proposals. Replicas cooperate
only with the leader using the highest round. However,
after leader failure it might be necessary for replicas to
cooperate with several leaders. Paxos solves this problem
by enforcing that, once a value has been decided, leaders
of higher rounds will also propose this locked-in value.
Thus in the first phase of a round, the leader determines
if it is safe to propose any value or if there is another
value that was already voted for. In the second phase,
the leader then tries to get a safe value accepted. If not
interrupted a round proceeds as follows:
PREPARE (1a) The leader sends a message to all repli-

cas, starting a new round.
PROMISE (1b) Replicas reply with a PROMISE not to

vote in lower rounds, and inform the leader of their
last vote.

ACCEPT (2a) After receiving a quorum of PROMISEs,
the leader determines a safe value and proposes it
to all replicas.

LEARN (2b) Replicas vote for the proposal, by sending
the value and round number to all other replicas, if
no higher round was started in the meantime.

A set of more than f replicas is called a quorum. By
abuse of notation, we also call a set of messages a
quorum, when sent by a quorum of replicas. A value v is
chosen in round r if a quorum of LEARN messages with
value v was sent in round r. A replica learns and accepts
this decision only if it received a quorum of LEARN
messages. The above can be repeated in new rounds,
until all replicas have learned the value. From a quorum
of PROMISE messages, safe values can be determined
following these rules:

• If no replica reports a vote, all values are safe.
• If some replica reports a vote in round r for value
v and no replica reports a vote in a round higher
than r, then v is safe.

These rules ensure, that once a value is chosen, only this
value is safe in higher rounds. Thus all replicas learn the
same value, even if they learn it in different rounds. We
call this property Safety.

We say that an execution of Paxos is live if a value can
get learned. For Paxos to be live, a leader has to finish
a round, communicating with a quorum of non-faulty
replicas, while no other leader starts a higher round.

B. The Paxos State Machine

A state machine is an application that, given a state and
a request, deterministically computes a new state and
possibly a reply to the request. When this state machine
is replicated for fault tolerance, it is important that the
replicas execute the same requests to maintain a con-
sistent state among themselves. Since several requests
might interfere with each other, it is also important that
replicas execute requests in the same order.



TABLE I
COMPARISON OF FAILURE HANDLING METHODS.

Live Reconfiguration
Replacement at i+ α at i+ 1

Disruption:
Paxos Instances Occupied 0 1 1
Requests Discarded 0 0 < α
Delay:
Waiting for Instances – < 2α ≤ α
Communication Steps 2 2/4c 2/4c

c After leader failure, 4 communication steps are required.

The replicas in a Paxos State Machine achieve this by
using Paxos to choose requests. For every new request,
a new Paxos instance is started. Its messages are tagged
with a request number i, saying that this instance is
choosing the ith request. Thus, as long as Paxos is live,
new requests can be processed. These will eventually be
learned and executed by all non-faulty replicas.

Though execution has to be done in correct order, the
Paxos instances can be performed concurrently. Thus it is
possible to propose and choose a request in instance i+1,
before the ith request is learned. To avoid that request
scheduling (Paxos) advances too far ahead of execution,
and to limit the state required for Paxos, typically only
α concurrent Paxos instances are allowed.

Note that, if a leader of one Paxos instance is faulty, he
is faulty in all instances. Therefore, round change should
be common for all Paxos instances. Thus, PREPARE and
PROMISE messages for concurrent Paxos instances can
be sent in the same message. [1] explains how this is
done, even for all future instances.

IV. VARIANTS OF RECONFIGURATION

In this section, we explain Reconfiguration and survey
different implementations. We also discuss how the
different methods cause Disruption and Delay.

Abstractly, Reconfiguration works by replacing the
whole set of replicas with a new set of replicas. Each
such set is called a configuration. The old configuration
has to decide on the new set of replicas and the initial
state of the new configuration. All new replicas then start
with the same state. When used to handle failures, the
new configuration will contain all the non-faulty replicas
and new ones instead of those considered faulty. A non-
faulty replica that is part of both the new and the old
configuration, will also adjust its state to the starting
state. Reconfiguration can also be applied without appar-
ent failures, e.g. to realize hardware upgrades or other
optimizations. These changes are infrequent and can be
scheduled in advance. Therefore Delay and Disruption
are of no concern in these cases.

Before Reconfiguration can take effect, the new con-
figuration has to be known to a majority of the old
replicas, to avoid splitting the state machine. An easy
way to achieve this is to issue a special reconfiguration
command as request to the state machine, specifying

the new set of replicas. The new configuration can
start after this request was chosen. However, it is not
that easy to decide on a starting state for the new
configuration, especially if several Paxos instances are
running concurrently.

Assume first, that only one request (α = 1) is chosen
at a time. If a reconfiguration command is proposed as
request number i, all earlier requests have been chosen
and executed, and no request higher than i has been
proposed. Therefore the new configuration should start
with the state obtained after executing request i− 1.

However, with α > 1, several requests are chosen
concurrently. In this case there might be both undecided
instance before the reconfiguration command, and al-
ready decided instances after it. A conservative approach,
proposed in [1] is to wait until all possibly decided
requests have been learned and executed, and only then
change to the new configuration. Thus, if the reconfig-
uration command was chosen as request number i, the
new configuration only starts running the instances with
number i + α and higher. This can cause a significant
Delay, depending on the α − 1 instances after the
reconfiguration command. This solution is summarized
as Reconfiguration at i+ α in Table I.

In [3] a similar method is used. As described above,
the new configuration only starts from instance i + α.
But where possible a no-op command is proposed. This
clearly reduces Delay, but leads to higher Disruption,
since application requests might have to wait while no-
op commands are being chosen.

A different solution was developed in [5], stopping the
old configuration directly after deciding on the reconfig-
uration command (with number i) and discarding pos-
sibly decided requests with numbers higher than i. This
method reduces Delay, but discarding decisions causes
Disruption since they have to be chosen again. Also, the
possibility to discard already decided requests makes it
more difficult to determine when requests are irrevocably
chosen. This solution is referred to as Reconfiguration
at i+1 in Table I. Note that in both solutions, all Paxos
instances with lower numbers than the reconfiguration
command have to be decided before the old configuration
can stop. There can be up to α proposed, but undecided
requests before the reconfiguration command. This can
delay a reconfiguration command issued concurrently
with other state machine requests.

Some Paxos implementations achieve high throughput
despite a very small α parameter, by batching many
requests together and accepting all of them in the same
instance [8]. To minimize Disruption, a reconfiguration
command should be sent as part of a full batch. However
that causes Delay, when waiting for the batch to be
filled up. Also it is unclear, whether the old or the new
configuration should execute the requests in the same



batch as a reconfiguration command. The alternative of
delaying the batch of requests while deciding on the
configuration reduces Delay, but introduces Disruption.

V. FROM RECONFIGURATION TO REPLACEMENT

We now derive Live Replacement in five steps starting
from a protocol called Fault-Masking Virtually Syn-
chronous Paxos presented in [9].

Step 1: Separating Reconfiguration from the Replicated
State Machine

In Reconfiguration as described earlier, the consensus
engine used to choose requests for the RSM is also used
to decide on reconfigurations. Birman et al. [9] proposed
a different approach, separating the protocol to choose
requests from the one used to decide on reconfigurations.
Here, we shall call the protocol for choosing requests
State Machine Consensus (SMC), and the one deciding
on reconfigurations Reconfiguration Consensus (RC).
Assuming the Paxos protocol is used in RC, we further
distinguish the two protocols by naming messages in RC:
RPREPARE, RPROMISE, RACCEPT, and RLEARN. We
call rounds in RC for epochs. The leader (proposer) of
an epoch in RC is called the RC-leader. The SMC and
RC interact in the following way:

• A replica stops participating in SMC upon receiving
a RPREPARE, and includes the last SMC state in its
RPROMISE message.

• If, after receiving a quorum of RPROMISEs, the RC-
leader can propose any value, a new configuration
and a consistent SMC starting state is chosen and
proposed in a RACCEPT message.

• RLEARN messages are sent to replicas in both the
old and the new configuration.

• On receiving a quorum of RLEARNs, the replicas
in the new configuration can start executing SMC
with the starting state determined by the RC-leader.

This protocol is depicted in Figure 1(a). For clarity, the
RC-leader is shown as an external process for all the
protocols in Figure 1. Normally the RC-leader will be
co-located with one of the replicas.

Step 2: Vertical Paxos

Separating RC from SMC clearly serves to reduce Delay.
Thus, RC never has to wait for SMC. However, the prob-
lem with this protocol is that the RPROMISE messages
also carry the SMC state. Thus, the first phase cannot be
skipped in the first epoch, or executed in advance as is
usually done in Paxos.

To overcome these problems, we consider a variation
of the above RC protocol, depicted in Figure 1(b). In this
protocol, replicas can continue SMC in the old epoch
until receiving a RACCEPT message. They then include
their SMC state in a RLEARN message sent only to the

RC-leader, who collects a quorum of these messages,
and decides on a starting state for the new configuration.
This is then forwarded as a RDECIDED message to the
replicas. Since SMC is only interrupted on receiving a
RACCEPT, RPREPARE messages can be sent in advance
or omitted for the first epoch.

In essence, this protocol is the same as Vertical
Paxos [10]. However, Vertical Paxos does not require the
exchange of RPREPARE and RPROMISE since it relies
on a centralized RC-leader to keep track of reconfigu-
rations. Vertical Paxos also makes use of a few other
optimizations that are not compatible with the following
steps, hence we do not discuss them here.

Step 3: Starting State Machine Consensus with Possibly
Different Values

For Step 3, note that it is not necessary for every
replica in the new reconfiguration to start SMC with
the same state, as long as no previously chosen values
are forgotten. Thus, every replica can determine its
SMC state from a quorum of RLEARN messages. Upon
learning about the new configuration, the replicas can
determine a consistent state for restarting SMC. This
reduces the average Disruption during reconfiguration to
one message delay, as depicted in Figure 1(c).

Step 4: Lightweight Reconfiguration Consensus

In this step, Reconfiguration Consensus is further re-
duced. When choosing state machine requests, it is
important that every replica executes all chosen requests
in the correct order. Thus, a chosen request can only be
executed after all preceding requests have been executed.
For reconfigurations this strict order is not necessary.
To install a chosen configuration, it is not necessary to
install all preceding configurations. Especially, since no
new requests can get chosen in these configurations, after
the replicas decided to reconfigure. We can therefore
remove the first phase of RC without risking safety.

This reduction leads to a protocol that no longer
solves classic consensus. However, as explained above,
it is sufficient to eventually agree on a configuration,
irrespective of intermediate configurations.

To further reduce RC, we note that, for a chosen
request to remain chosen after reconfiguration, it has
to be present in a majority of the replicas in the new
configuration. It is therefore sufficient, if no replica
forgets this request during reconfiguration, and all new
replicas include this request in their SMC starting state.
Thus, we only need to send RLEARN messages to the
new replicas, and have the other replicas restart SMC in
the new configuration immediately after receiving the
RACCEPT, with the same state as before. As shown
in Figure 1(d), the number of RLEARN messages is
significantly reduced.
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Fig. 1. Steps towards Live Replacement.

The changes introduced to RC in this step do not en-
danger safety, however liveness may be violated. That is
because in the presence of multiple RC-leaders, a leader
could send its RACCEPT to an outdated configuration,
and two leaders could even separate the replicas into two
configurations, both unable to make further decisions.
We have designed extensions to our protocol to deal
with these problems. Since these are special cases and
irrelevant for the average Delay and Disruption, we do
not describe them here.

Step 5: Live Replacement

Even though replicas that transition from the old to
the new configuration can restart SMC immediately,
state machine commands must be chosen in one of the
configurations. Thus, reconfiguration still stops SMC,
causing Disruption.

We therefore introduce new identifiers for our config-
urations, called epoch vectors. These are vector clocks,
showing for each replica, the epoch when it first joined
SMC. Thus, epoch vectors can be used to identify
which replicas have been replaced by new replicas and
which are stable across configurations. By attaching
these epoch vectors to SMC LEARN messages, replicas
in the new configuration can form a quorum and decide,
even though some of the replicas have not yet installed
the new configuration.

As depicted in Figure 1(e), SMC now suffers no
Disruption from replacing a failed replica. However, we
note that Live Replacement can only replace replicas. It
is not applicable for changing the number of replicas in a
configuration. The proof, showing that Live Replacement
does not compromise safety, was omitted to meet the
page limit. Also, in an asynchronous system, we cannot
be sure that a replica that was detected as faulty, has
really failed. We therefore also have to consider the case,
when the replaced replica is actually non-faulty.

VI. CONCLUSIONS

Live Replacement takes a new approach to handle
failures in a Paxos State Machine. It is particularly
adept for immediate failure handling. On average, Live
Replacement and Reconfiguration both take two message
delays to decide on a new configuration, but as shown
in §IV, implementing Reconfiguration enforces several
decisions, favoring either Delay or Disruption. Since
Live Replacement is decoupled from SMC, it never
has to wait for any unfinished instances in SMC. Live
Replacement avoids Disruption by allowing replicas to
continue running SMC during replacement. Finally, Live
Replacement is controlled by a RC-leader, who’s task
can be assigned to a different replica than the Paxos
leader. Thus, replacement will not impose additional
overhead for the already heavily loaded Paxos leader.
It thus guarantees fast reaction to failures with minimal
effect on the state machines operation.
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