
Byzantine Fault-Tolerant Publish/Subscribe:
A Cloud Computing Infrastructure

(Position Paper)

Tiancheng Chang and Hein Meling
Department of Electrical Engineering and Computer Science

University of Stavanger, Norway
{tiancheng.chang, hein.meling}@uis.no

Abstract—The emerging publish/subscribe communication
paradigm for building large-scale distributed event notification
systems, has been shown to exhibit excellent performance and
scalability characteristics. Moreover, some work also focus on
providing reliability and availability guarantees in the face of
node crash and link failures. Such publish/subscribe systems are
commonly used in cloud computing infrastructures. However,
addressing the dependability concern due to malicious attacks or
unintentional software errors, which can potentially corrupt the
system, has largely been left untouched by researchers.

In this paper, we first identify some of the potential problem
areas related to Byzantine behavior in the publish/subscribe
paradigm. Secondly, we propose several directions of research
for designing a Byzantine fault-tolerant publish/subscribe system
suitable for use as a cloud computing infrastructure.

I. INTRODUCTION

The ever increasing scale of geographically dispersed sys-
tems is severely challenging communication infrastructure
designers. In particular, the traditional tightly-coupled and
synchronous client/server model is being challenged by the
evolving publish/subscribe (pub/sub) interaction paradigm. An
appealing trait of pub/sub is its ability to handle wide-area
data propagation across an enormous number of data sources
and sinks. Messages are typically forwarded from publishers
to subscribers through brokers. Brokers are responsible for
matching publications to subscribers and forwarding messages
accordingly. In its simplest form, one broker acts as the
centralized service provider which joins all publishers and
subscribers. A modish approach is to use a set of dedicated
brokers to form an overlay network.

Pub/sub is an important cloud computing infrastructure
widely adopted in industry, e.g. Windows Azure service
bus [1], Google GooPS [2], Oracle Java Messaging Service [3],
and IBM WebSphere [4]. A significant effort has been devoted
to developing high-performance and highly scalable pub/sub
systems [5], [6], as well as crash failure resilience [7]. How-
ever, to our knowledge, very little effort has gone into devel-
oping dependable pub/sub systems that can tolerate Byzantine
faults [8]. A Byzantine faulty node may deviate from the
protocol specification and can cause the pub/sub system to
enter a corrupted or arbitrary system state, which can have
serious consequences for users of the system.

In this paper, we sketch a Byzantine fault-tolerant cloud
infrastructure for pub/sub systems. The infrastructure aims to

ameliorate the malicious behavior by brokers, publishers, and
subscribers, in addition to normal crash failures. For example,
a Byzantine faulty broker could falsify messages en route to
subscribers, which would cause damage to system integrity,
e.g. in a stock system, it is unacceptable for subscribers
to receive falsified or even delayed stock quotes. Besides,
malicious publishers and subscribers could invoke a denial-
of-service attack on the system by sending vast amounts of
publications or subscription requests. Our proposed system
aims to offer a cloud computing infrastructure which ensures
system safety and achieves liveness despite Byzantine failures,
by masking and eventually excluding Byzantine faulty nodes.

II. SCOPE AND ASSUMPTIONS

In our envisioned cloud infrastructure, we assume topic-based
pub/sub [9] as our starting point. In a topic-based system,
messages are published to topics, and subscribers receive all
messages published to the topics to which they subscribe; all
subscribers to a given topic receive the same messages. We do
not assume advertisement-based routing at this point in time.
Advertisements are generally used to optimize content-based
pub/sub, and are produced by publishers to announce their
intention to publish certain types of publications. Our decision
to focus on topic-based pub/sub is for simplicity, however,
content-based pub/sub will be considered in future work.

We are interested in both centralized and distributed pub/sub
architectures. In a centralized architecture, a single service
provider is used. Thus, replication is necessary to build a fault-
tolerant centralized pub/sub system. Moreover, a distributed
pub/sub architecture is comprised of a set of cooperating bro-
kers that form an overlay network. In pub/sub, we distinguish
between three different agent roles: subscriber, publisher, and
broker. In addition to a purely Byzantine failure model, we
are interested in different combinations of failure models, in
which the different agent roles may assume different failure
models. For example, we may consider a system in which
brokers only tolerate benign crash failures among themselves,
while still being resilient to Byzantine behavior of the external
agents, i.e. publishers and subscribers [10]. Thus, in this paper,
we identify misbehaviors based on agent roles.

We assume asynchronous communication. Messages can be
delayed indefinitely, thus a failure detector cannot distinguish
between a node crash and link failure.



III. PROBLEM ANALYSIS: FAILURE SCENARIOS

Inspired by analysis of attacks due to misbehaving routers [11],
denial-of-service attacks by publishers and subscribers [12],
and other malicious behaviors and threats in pub/sub [13],
[14], we enumerate the following potential misbehavior sce-
narios:
(a) BROKER: A Byzantine broker’s misbehaviors include:

• Publication delay: A Byzantine faulty broker can inject
arbitrary delays. This can reduce performance, cause
omission failure, or even system outage in the worst case;

• Message reordering: A faulty broker can order publi-
cations and subscriptions arbitrarily, violating ordering
principles implemented in the system. This can cause per-
formance issues or even denial-of-service for subscribers;

• Subscription corruption: A faulty broker can modify,
drop, or inject subscriptions. This will contaminate rout-
ing tables, which may cause publication loss or erroneous
forwarding of publications to unauthorized subscribers;

• Publication corruption: A faulty broker can corrupt a
publication by tampering with its content, and it can also
inject arbitrary publications. This behavior may lower
system integrity for subscribers.

(b) PUBLISHER: A Byzantine publisher’s behaviors include:
• Spam injection: A faulty publisher can inject spam pub-

lications which draw no interest from subscribers. This
can be done by colluding with malicious brokers. It will
cause internal performance problem for benign brokers
or even denial-of-service;

• Publication flooding: A faulty publisher can produce
publications to match as many publications as possible.
This will affect service quality for subscribers;

• Colluding attack: A faulty publisher can collude with
malicious subscribers to generate overwhelming amounts
of publications. This causes denial-of-service to brokers.

(c) SUBSCRIBER: A Byzantine subscriber’s behaviors include:
• Greedy subscription: A faulty subscriber can greedily

subscribe to all types of publications. This kind of behav-
ior is generally not forbidden in previous research works.
But it can lead to overwhelming traffic;

• Frivolous subscription: A faulty subscriber can repeatedly
subscribe and unsubscribe to produce a large number of
routing table update traffic; this will affect the service
quality of brokers;

• Deny acknowledgement: A faulty subscriber can deny
receiving publications. This will prevent the responsible
brokers from garbage collection and cause retransmission
in pub/sub systems requiring acknowledgement;

• Colluding attack: A faulty subscriber can collude with
publishers to receive large amounts of publications.

In addition to the above malicious faults, nodes may also crash.
To build a fault-tolerant pub/sub system capable of tackling

the above mentioned problems is not an easy task. For exam-
ple, in (a) it is difficult, maybe even impossible, to differentiate
malicious publication delays from delay due to asynchrony
of links; for (b) it is difficult to say whether a publisher is

benignly generating lots of publication or maliciously flooding
the system with spam; in (c) it is not easy to separate a sub-
scriber’s denial to receive (acknowledge) certain publications
and actual publication loss caused by link or node failure.

Our goal is build a system that will cover as many of these
Byzantine faulty behaviors as possible.

IV. BYZANTINE FAULT-TOLERANT PUB/SUB

Byzantine fault tolerance in a generic point-to-point architec-
ture has reached a certain level of maturity, and usually rely
on the Replicated State Machine (RSM) approach. The RSM
is a general approach for constructing fault-tolerant services,
and a key protocol underlying RSM is consensus [15]. Several
Byzantine fault-tolerant (BFT) consensus protocols [16], [17]
have been used to construct client/server systems that need to
resist the effects of compromise.

We propose to use replication techniques, primarily for
brokers, in our infrastructure to mask the effects of Byzantine
failures. Our decision is based on the fact that, it is impossible
for a single entity to determine that its neighbor node is
behaving abnormally. As in the traditional consensus problem,
such detection demands synchronization between a quorum of
correctly behaving nodes. BFT techniques have also been used
in another domain, namely to facilitate a Byzantine tolerant
tuple space [18]. A tuple space is a essentially a distributed
shared memory, which enables clients to conduct decoupled
coordination. A tuple space is essentially based on a client-
server architecture, and aims to facilitate data sharing. This
is different from the objective of event-based pub/sub, which
is to provide a message passing and filtering architecture.
Unlike globally-accessible data, events produced in a pub/sub
system is only delivered to entities that have subscribed to it.
Moreover, in some cases, the event may only be observable
for the duration of message passing to its presently available
subscribers [19]. In other cases, a message queue may hold
events for delivery to new subscribers.

The nature of pub/sub makes it very different from the
traditional client-server approach usually considered in BFT
systems. We aim to study replication in the following forms of
pub/sub infrastructure: (i) centralized replicated brokers; and
(ii) overlay of replicated brokers. The two forms of replication
correspond to the two types of pub/sub architectures.

A. Centralized Replicated Brokers

We propose an RSM-based centralized pub/sub architecture, in
which a set of replicated brokers are used to offer a centralized
service. The set of replicated brokers appears to the publishers
and subscribers, to be one virtual broker, offering transparent
service. With this strategy, we can avoid system outage caused
by the single point of failure as long as a quorum of brokers
remains live. We can also avoid that the system becomes
compromised or enters an arbitrary state, by masking the be-
havior of Byzantine faulty brokers1 inside the set of replicated
brokers, including corrupting publications, modifying routing

1Masking f Byzantine brokers requires 3f + 1 replicas.



table entries, arbitrary delay, message dropping and reordering,
as long as there is a quorum of non-faulty brokers in the set.

There remains a number of challenges in applying BFT to
pub/sub: (A) generic BFT protocols are often criticized for
performance and latency issues, and high replication degree.
It remains an open question how these protocols can be
optimized for pub/sub; (B) previous research on BFT protocols
relies on time and synchronization coupling to achieve live-
ness. However, an important trait of pub/sub is its decoupled
nature, which may demand new protocols; (C) since a cloud
infrastructure for pub/sub is expected to be large-scale and
wide-area, it becomes prudent to question the scalability of
the centralized replicated broker architecture. One approach is
use an overlay of replicated brokers, as we discuss next.

B. Overlay of Replicated Brokers

Often brokers may be interconnected over some overlay
network [20] to scale the number of publishers, subscribers
and the number of events that can be handled. Moreover,
an overlay network may also serve as a basis for providing
fault-tolerant communication. Several network topologies are
possible. A linear topology offers the simplest method to add
new nodes by serially attaching each node to the next. But
it is generally expensive in terms of computing and lacks
in fault tolerance. The mesh topology (fully-connected), is
usually complex and expensive unless deployed on a small
set of nodes. A tree-based topology is most frequently used,
because it can efficiently connect a large number of nodes.

As a method of scaling up the centralized infrastructure,
we can (1) use a small set of replicated brokers to represent a
single broker in the overlay. In the traditional approach, failure
of an intermediate broker causes propagation interruption or
compromise unless the faulty broker is recovered or bypassed.
Replication of brokers prevents that, as long as each set of
replicated brokers retains liveness and safety; and (2) use
replicated propagation paths [13] as a second barrier. Usually,
there is only one path between two neighboring brokers. And
thus failures require topology reconfiguration to resume. By
replicating propagation paths, we avoid reconfiguring topol-
ogy, as long as at least one of the replicated paths is active.

Yet, there remains numerous challenges. It is difficult to
plainly implement replication on any type of the topologies
considering that replication increases interconnection com-
plexity thus the replicated topology will be costly. Besides,
replicated propagation paths occupy more network resources.
It remains a question of organizing a suitable topology to
neutralize the interconnection complexity raised by replication.

C. Suspicion Mechanism

Apart from masking Byzantine faulty brokers through use of
replication, mechanisms are also needed to mask malicious
behaviors by publishers and subscribers. However, it is difficult
to distinguish malicious from benign behaviors.

To address this problem, we let the edge brokers imple-
ment suspicion and incentive mechanism revised for pub/sub.
Namely, a publisher/subscriber’s inappropriate behaviors, e.g.

delay, message loss or overwhelming, will be suspected and
punished to some extent. The punishment ensures that misbe-
haviors will eventually be no cheaper than acting in accordance
with the original protocol. When the inappropriate behaviors
by a publisher or subscriber exceed certain thresholds, e.g.
reacting too slowly or too frequently than our predefined pa-
rameter, we mask it as malicious and exclude. Such suspicion
and punishment mechanism was also used in [21].

V. SUMMARY

Byzantine fault tolerance in cloud computing infrastructures
such as pub/sub has yet to be sufficiently addressed. We aim
to develop a Byzantine fault-tolerant protocol for pub/sub, and
subsequently a prototype system.

ACKNOWLEDGEMENT

Thanks to Leander Jehl and Roman Vitenberg for fruitful
discussions and feedback.

REFERENCES

[1] T. Redkar, Windows Azure Platform. Apress, 2010.
[2] J. Reumann, “Pub/sub at google,” CANOE Summer School, 2009.
[3] R. Monson-Haefel and D. Chappell, Java Message Service. O’Reilly

& Associates, Inc., 2000.
[4] F. Budinsky, G. DeCandio, R. Earle, T. Francis, J. Jones, J. Li, M. Nally,

C. Nelin, V. Popescu, S. Rich, A. Ryman, and T. Wilson, “Websphere
studio overview,” IBM Syst. J., vol. 43, no. 2, pp. 384–419, Apr. 2004.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation
of a wide-area event notification service,” ACM Trans. Comput. Syst.,
vol. 19, no. 3, pp. 332–383, Aug. 2001.

[6] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom,
and D. C. Sturman, “An efficient multicast protocol for content-based
publish-subscribe systems,” in ICDCS, 1999, pp. 262–272.

[7] R. S. Kazemzadeh and H.-A. Jacobsen, “Reliable and highly available
distributed publish/subscribe service,” in SRDS, 2009, pp. 41–50.

[8] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, July
1982.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, June 2003.

[10] H. Meling, K. Marzullo, and A. Mei, “When you don’t trust clients:
Byzantine proposer fast paxos,” in ICDCS, 2012.

[11] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, “Detecting and
isolating malicious routers,” IEEE Trans. Dependable Secure Comput.,
vol. 3, pp. 230–244, 2006.

[12] A. Wun, A. Cheung, and H.-A. Jacobsen, “A taxonomy for denial of
service attacks in content-based publish/subscribe systems,” in DEBS,
2007, pp. 116–127.

[13] Private communication.
[14] T. R. Mayer, L. Brunie, D. Coquil, and H. Kosch, “Evaluating the

Robustness of Publish/Subscribe Systems,” in 3PGCIC, 2011.
[15] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,

vol. 16, no. 2, pp. 133–169, May 1998.
[16] M. Castro and B. Liskov, “Practical byzantine fault tolerance and

proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, Nov. 2002.

[17] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in SOSP, 2007, pp. 45–58.

[18] A. N. Bessani, E. P. Alchieri, M. Correia, and J. da Silva Fraga,
“Depspace: A byzantine fault-tolerant coordination service,” in ACM
SIGOPS/EuroSys, Apr. 2008.

[19] N. Busi and G. Zavattaro, “Publish/subscribe vs. shared dataspace
coordination infrastructures: Is it just a matter of taste?” in WETICE,
2001.

[20] M. van Steen, Graph Theory and Complex Networks: An Introduction.
Maarten van Steen, 2010.

[21] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth,
“Bar fault tolerance for cooperative services,” in SOSP, 2005, pp. 45–58.


