
Type-safe Dynamic Protocol Composition in Jgroup/ARM

Hein Meling
Department of Electrical Engineering and

Computer Science
University of Stavanger, 4036 Stavanger, Norway

hein.meling@uis.no

Alberto Montresor
Dip. di Ingegneria e Scienza dell’Informazione
University of Trento, via Sommarive 14, 38050

Trento, Italy
alberto.montresor@unitn.it

ABSTRACT
Protocol composition is a common approach to structure
protocols used by networked applications, and typically a
vertically layered approach is taken. This paper presents an
alternative approach, where the protocol composition is a
weakly-coupled set of protocol modules organized in a non-
hierarchical structure. Protocol modules are dynamically
constructed at runtime. The approach is designed for sys-
tems that involves multiple communicating entities and mul-
ticast style interactions are supported, making the approach
suitable for building reliable network applications. The main
advantage of the approach is type-safety and that modules
in the same composition communicate by direct interaction,
whereas other frameworks typically use a vertically layered
protocol stack, forcing all messages/events to pass through
all intermediate layers introducing unnecessary delays.

Categories and Subject Descriptors
C.2.8 [Computer Systems Organization]: Computer Com-
munication Networks—Distributed Systems; D.1.3 [Software]:
Concurrent Programming—Distributed Programming ; D.2.12
[Software]: Software Engineering—Distributed Objects

Keywords
Dynamic Protocol Composition, Group Communication, Repli-
cation, Recovery

1. INTRODUCTION
Networked computer systems are prevalent in most aspects
of modern society, and we have become dependent on them
to perform many critical tasks. Making such systems de-
pendable is an important goal. Yet, dependability issues are
often neglected due to the complexities of the techniques
involved. Modularization is a well-known principle for sim-
plifying complex systems, and combined with middleware to
support replication, it is possible to construct fault-tolerant
applications with significantly smaller costs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MAI ’09 Lisbon, Portugal
Copyright 2009 ACM 978-1-60558-489-8/09/06 ...$10.00.

This paper presents the protocol composition framework
of Jgroup/ARM [9], a middleware platform for developing
and operating dependable distributed applications. Jgroup
integrates the distributed object model of Java remote met-
hod invocations (RMI) with the object group communication
paradigm, enabling the construction of groups of replicated
server objects, denoted replicas, that provide dependable
services to clients. The Autonomous Replication Manage-
ment (ARM) framework provides mechanisms for deploying
replicas to host processors and recovering from failures.

Jgroup/ARM is aimed at simplifying the development of
dependable network information services. One part of this
simplification is accomplished through modularization of pro-
tocol modules and composing them into a complete protocol
stack. Protocols in Jgroup/ARM usually involves multiple
communicating entities, i.e. all members of a replicated ob-
ject group, and specialized multicast interactions are sup-
ported for interactions with peers in the same group. Pro-
tocol modules in the same composition (i.e., same process)
communicate by direct interaction. Using this framework,
a dependable service can easily construct and configure its
own protocol composition dynamically at deployment time.
Each protocol module in the composition can be parame-
terized according to the service dependability requirements.
Adding new protocols to the system is also very easy.

Paper structure: Section 1.1 discusses previous works on
protocol architectures and relates these to the approach taken
by Jgroup/ARM. Section 2 briefly presents Jgroup/ARM.
Section 3 introduces the concepts on which the protocol
composition framework is based, and illustrates a sample
protocol stack. Section 4 details the ways in which protocol
modules can communicate, both internally and externally.
Finally, in Section 5 the dynamic composition of protocol
modules is discussed and Section 6 concludes the paper.

1.1 Introduction to Protocol Architectures
Protocol composition is traditionally based on layered pro-
tocol stacks. However, in the last decade, micro-protocols
have become increasingly popular, as they enable a more
flexible approach to protocol composition. To accomplish
this, micro-protocol frameworks restrict their protocol lay-
ers to follow a specific model, rather than building protocols
in an ad hoc manner. These restrictions include: (i) the pro-
tocol layers have to communicate using events that travel up
or down the protocol stack, and (ii) the layers cannot share
any state. This way protocols become more maintainable
and configurable as new protocols can easily be added to
the system. The cost however, is reduced performance.

Micro-protocols were first introduced in the x -kernel [7],

and have since been used in a variety of systems, includ-
ing group communication systems such as Ensemble [5], Ho-
rus [15], JavaGroups [2], Cactus [6] and Appia [10]. Ensem-
ble, Horus, JavaGroups and Appia follow a strictly vertical
stack composition, where events must pass through all layers
in the stack. In the Horus system, a protocol accelerator [14]
implements optimizations that reduce the effects of protocol
layering. The limitation of these optimization techniques is
that the set of protocols to be bypassed must be well-defined,
and the optimizations were hand-coded into the protocol
stack. Thus, it reduces the configurability of the micro-
protocol framework. Similar optimizations are also feasible
with Ensemble. Both Appia and JavaGroups are also based
on micro-protocols in its purest form, since none of the opti-
mizations implemented in Horus and Ensemble are available.
That means that every event has to pass through all inter-
mediate layers, even when the event is not being processed
by all of them. The Cactus micro-protocol framework is
conceptually similar to the protocol composition framework
discussed in this paper. Each layer has to register its in-
terest in the events of other layers, and protocols can be
constructed according to formal rules, such as a dependency
graph. Thus, such a protocol stack does not follow a strict
vertical composition. An advantage of the Jgroup protocol
framework over JavaGroups, Appia and the Cactus system is
type-safety. Events are passed by means of method calls on a
set of well-defined interfaces for the various modules (layers),
whereas other systems have to implement a common han-
dler method in each layer which takes care of demultiplex-
ing the received events based on the type of the events. In
Jgroup, events are passed directly to the appropriate event
handler. Another advantage of Jgroup over the Cactus sys-
tem is the possibility to specify interception rules, enabling
a module to delay and/or modify events from another mod-
ule. The SAMOA [12] framework is also conceptually simi-
lar to the approach in this paper. The main differences are
that SAMOA supports concurrency and asynchronous stack
internal interactions, whereas Jgroup uses synchronous in-
teractions and leaves concurrency a non-framework issue.
Synchronous interaction is a simpler approach, and makes
it easier for developers to write protocol modules. Both the
Neko [13] protocol prototyping framework and Jgroup/ARM
uses an approach based on dependency injection [4]. Kom-
pics [3] use generics to ensure strongly typed channels for
event delivery, but does not leverage dependency injection
for connecting components, and thus protocol developers
need to manually connect components.

2. THE JGROUP/ARM MIDDLEWARE
Jgroup [9] integrates the Java RMI distributed object models
with the group communication paradigm and autonomous
fault treatment. Jgroup provides three core services aimed at
simplifying coordination among replicas: a partition-aware
group membership service (PGMS), a group method invoca-
tion service (GMIS) and a state merging service (SMS).

The task of the PGMS is to provide replicas with a con-
sistent view of the group’s current membership, to enable
replica coordination. Reliable communication between clients
and the object group take the form of group method invoca-
tions (GMI), that result in methods being executed by the
replicas in the group. To clients, GMI interactions are indis-
tinguishable from standard Java RMI: clients interact with
the group through a group proxy that acts as a representa-

Group

G
ro

u
p

 M
a

n
a

g
e

r

Replica

proxy

Client

Jgroup Daemon

Network

GMIS

PGMS

SMS

Figure 1: Overview of Jgroup services.

tive object for the group, hiding its composition. The group
proxy maintains information about the replicas composing
the group, and handle invocations on behalf of clients by
establishing communication with one or more replicas and
returning the result to the invoker. This form of GMI is
called External GMI (EGMI). On the server side, the GMIS
enforce reliable communication among replicas within the
group and are called Internal GMI. Finally, the task of SMS
is to support developers in re-establishing a global shared
state after merging from a network partition.

Fig. 1 gives a high-level overview of the composition of
the core Jgroup services. The main component of Jgroup
is the Jgroup daemon; it implements basic group commu-
nication services such as failure detection, group member-
ship and reliable communication. Replicas must connect
to a Jgroup daemon to access to the group communication
services. Each replica is associated with a group manager
(GM), whose task is to act as an interface between the
Jgroup daemon and the replica.

The ARM framework [8] provides mechanisms for auto-
mated fault treatment and management activities such as
distributing replicas on sites and nodes, and recovering from
failures, reducing the need for human intervention. These
mechanisms are essential to operate a system with strict de-
pendability requirements, and are largely missing from ex-
isting group communication systems [11, 10, 2]. Much of
the ARM functionality is implemented by separate protocol
modules integrated into the GM component.

3. PROTOCOL MODULES
The group manager (GM) is the glue between an applica-
tion and the core group communication services; it encapsu-
lates all protocol modules associated with the application.
It allows the application to interface with Jgroup services to
perform group-specific tasks. The GM is based on an event-
driven non-hierarchical composition model, and consists of a
set of weakly coupled protocol modules. Each protocol mod-
ule implements a group-specific function, which may require
the collaboration of all group members, e.g. the membership
service. In fact, all the basic Jgroup services discussed in
Section 2 and several other generic group-specific functions
are implemented as GM protocol modules.

The advantages of weakly coupled protocol modules over
a strictly vertically layered architecture, is that events being
passed from one layer (module) do not have to be processed
by any intermediate layers. Events can simply be passed
from one module to another without any processing delay

and addition/removal of header fields, thus also reducing
the complexity of implementing a module. Our approach
is also flexible in that a module can intercept command-
s/events from another module, delay and/or modify them,
before delivery to the destination module. Interception rules
are specified inline in the modules using annotations, and the
corresponding implementations must adhere to these rules.

Protocol modules communicate with the application, or
other modules, by means of commands (downcalls) and events
(upcalls) through a set of well-defined interfaces. Typically,
a module provides a set of services to other modules and/or
the application, and requires another set of services from
other modules to perform its services. A module may also
substitute the services provided by another module, by inter-
cepting, delaying and/or modifying the commands/events
passed on to the substituted module.

Each module implements one or more well-defined service
interfaces, through which the module can be controlled, and
it may also generate events to listening modules (or the ap-
plication) through one or more listener interfaces. Usually, a
module implements one service interface and provide events
to other modules through one listener interface. As an exam-
ple, consider the MembershipModule which is defined by the
MembershipService and MembershipListener interfaces, shown in
Fig. 2. Replicas can access the service interfaces of proto-
col modules by querying the GM. However, to be notified
of events generated by a module, a replica only needs to
implement the module’s listener interface.

The set of protocol modules required by an application is
configured through the ARM policy management [8]. Based
on this configuration, the protocol modules are constructed
dynamically at runtime. The advantage of dynamic con-
struction is that it enables developers to easily build generic
group-specific functions and augment the system with new
modules without having to recompile the complete frame-
work. There is no strict ordering in which the modules have
to be constructed, except that the set of required modules
must have been constructed a priori . During construction,
each module is checked for structural correctness, and re-
quired modules are constructed on-demand.

Fig. 2 illustrates a protocol composition containing the ba-
sic Jgroup services, except the GMIS. For readability only
the most important commands/events are shown in the in-
terfaces. The DispatcherModule is responsible for queuing and
dispatching events to/from the daemon, and is the interface
between the protocol modules and the daemon. The Mul-

ticastModule implements the MulticastService through which
other modules (and the replica) can send multicast messages
to the group members. To receive messages, a module must
implement the MulticastListener interface. The main task of
the MulticastModule is to multiplex and demultiplex messages
to/from the internal modules or the replica. The actual low-
level multicast is performed by the daemon. Other mod-
ules (or the replica) can join() or leave() a group by invok-
ing the MembershipService interface, which is implemented by
the MembershipModule. Variations in the group membership
are reported through viewChange() events. Any number of
modules, and the replica, may register its interest in such
events simply by implementing the MembershipListener inter-
face. The MembershipModule mainly keeps track of various
state information and provides an interface to the PGMS,
whereas the view agreement protocol [11] is implemented in
the daemon. The DispatcherModule, MulticastModule and Mem-

Replica

G
ro

up
 M

an
ag

er

StateMergeModule

MembershipModule

MulticastModule

DispatcherModule

MembershipService

MembershipService

MulticastService

DispatcherService

MembershipListener StateMergeListener

MembershipListener MulticastListener

DispatcherListener

DispatcherListener

StateMergeService

RemoteDispatcher

join(group) leave()

join(group) leave()

mcast(stream)

viewChange(view)

viewChange(view) getState()putState(state)

deliverStream(stream)

notify(event)

notify(event)

Daemon

notify(event)

DaemonDispatcher

dispatch(event)LegendLegend
Remote method invoc.
Local invocation

dispatch(event)dispatch(event)

isMember()

Figure 2: A sample group manager composition with
the basic Jgroup services.

bershipModule are mandatory, and must always be included
to support group communication.

Note that the StateMergeModule implements the Membership-

Service interface, and provides events through the Membership-

Listener interface. This is since the StateMergeModule substi-
tutes the membership service by intercepting and delaying
the delivery of viewChange() events to the replica until after
the state has been merged. The main task of the State-

MergeModule is to drive the state reconciliation protocol by
calling getState() and putState() on the StateMergeListener in-
terface to obtain and merge the state of the replicas. It also
handles leader election and information diffusion. State rec-
onciliation is only activated when needed, i.e. in response
to viewChange() events generated by the MembershipModule.
Hence, the StateMergeService interface (dashed box) does not
provide commands as a means for activating it. The State-

MergeModule also requires both the MembershipModule and the
MulticastModule, and substitutes the MembershipModule.

4. MODULE INTERACTIONS
Protocol modules may interact in a number of different ways,
both with external entities and other protocol modules. Hen-
ce, to construct the protocol modules dynamically, it is nec-
essary to understand how the modules can interact so as to
dynamically establish the necessary links between them.

Fig. 3 illustrates inter-module and replica-to-module in-
teractions. Inter-module interactions may occur both within
the same GM, and also across distinct GMs. Mostly, only
GMs that belong to the same group needs to communicate.
GMs belonging to the same group should be composed of
an identical set of protocol modules. The arrows in Fig. 3
represents a may communicate relation. That is, a module
may or may not communicate with another module in one
or both directions. The replicas may also interact directly
with one or more of the modules within its local GM, with-
out passing through any intermediate modules. The thicker
arrows represent remote interaction between peer modules.

Four distinct interaction styles involving protocol modules

Replica to module interaction

Remote inter−module interaction

Local inter−module interaction

G
ro

u
p

 M
a

n
a

g
e

r

Legend:

G
ro

u
p

 M
a

n
a

g
e

r

Replica 1 Replica 2

Module Z

Module X

Module Z

Module Y

Module X

Module Y

Figure 3: Inter-module and replica-to-module inter-
actions.

Module B Module C

Module A

Module D Module E

Service Interface

Listener Interface 1 Listener Interface n

Legend:Legend:

...
... en ,1

Command k
Event j of listener interface i
events for interface n

en ,k ne1, k 1e1,1

c1 ck

ck
ei , j
k n

Figure 4: A generic view of the interfaces used for
local inter-module interactions.

are listed below. The first three are shown in Fig. 3.

1. Local inter-module interactions between modules of
the same GM.

2. Remote inter-module interactions between peer mod-
ules in distinct GMs.

3. Interactions between the replica and its local modules.

4. Interactions between an external entity and a module.

The last interaction style allows a module to notify or to be
notified by an external entity. Below, each of these inter-
action styles are discussed individually. Although common-
place, application-level replica-to-replica interactions are not
considered here.

Local Inter-module Interactions As mentioned above,
the GM is composed of a collection of protocol modules,
each of which may provide a service to other modules in the
same GM. In addition, a protocol module may also listen to
events from other modules. Fig. 4 illustrates a generic view
of the internal inter-module interaction interfaces, through
which local protocol modules communicate. In the figure,
the service interface implemented by module A is used by
modules B and C within the same GM to invoke commands
offered through the service interface (e.g. to join() a group).
Module A also implements a set of listener interfaces through
which it can be notified of events generated by modules D
and E (e.g. a viewChange() event.)

A module must implement at least one service interface,
but may also implement more than one service (not shown
in Fig. 4). Implementing multiple service interfaces is use-
ful when a module intercept and substitute the services of
another module, e.g. the StateMergeModule in Fig. 2. For
most other circumstances a module should implement only
a single service interface to encourage reuse.

The service interface typically contains one or more com-
mands (c1, . . . , ck), that can be invoked by the replica or
other modules. The service interface may also be empty
in that it does not provide any commands (methods). Such
empty interfaces are often called marker interfaces, and serve
to identify the module internally in the GM. The dashed box
around the StateMergeService interface in Fig. 2 is one exam-
ple of an empty marker interface.

A module may have one or more associated listener inter-
faces through which module generated events can be passed
to its listeners (other modules or the replica). Fig. 2 illus-
trates the use of multiple listener interfaces; the StateMerge-

Module generates events through both StateMergeListener and
MembershipListener, since the StateMergeModule substitutes the
MembershipModule. Usually however, a module generates ev-
ents through a single listener interface (see Fig. 4). A mod-
ule without any associated listener interfaces is useful only
when the module provide service commands. A module may
receive events (ej,1, . . . , ej,kj) generated by other modules by
implementing the listener interface j.

The service and listener interfaces are defined in terms of
Java interfaces (ensuring type safety), and arrows in Fig. 4
represents Java methods (commands/events).

Remote Inter-module Interactions Modules in one
GM may interact with its remote peer modules in other
GMs of the same group. Two approaches can be used by
module developers for interaction between peer modules:

• Message multicasting (MulticastModule)

• Internal group method invocations (InternalGMIModule).

The advantage of the former approach is primarily efficiency,
since it adds no overhead to the messages being sent by
the module, except for a small header used to route multi-
cast messages to the appropriate peer modules. The draw-
back with message multicasting is that module complexity
increases, since the developer must implement marshalling
and unmarshalling routines for the different message types
to be exchanged between peer modules.

Contrarily, the InternalGMIModule takes care of marshalling
and unmarshalling, reducing the module complexity to pure
algorithmic considerations. The InternalGMIModule does how-
ever impose an additional overhead compared to that of mes-
sage multicasting. The overhead is mostly due to the use of
dynamically generated proxies [1, Ch.16]. Albeit not con-
firmed through measurements, the expected overhead im-
posed by the proxy mechanism is small compared to the
communication latencies between the peer modules. Details
of the workings of the InternalGMIModule as a means for com-
munication between peer modules is given in [8].

Replica to Module Interactions The replica imple-
mentation may interact with the local modules. Fig. 5 shows
a generic view of the replica-to-module interactions. A repl-
ica may choose to listen to an arbitrary set of events gen-
erated by its associated protocol modules. To accomplish
this, the replica must implement the listener interfaces as-
sociated with the modules whose events are of interest. The
replica may also choose to not implement any listener in-
terfaces if it does not need to process events generated by
modules. In a similar manner, the replica may invoke any
one of the commands provided through the service interfaces
of the protocol modules associated with the replica.

As Fig. 5 shows, various combinations of using services
and listening to events are possible. The replica may both
listen to events of a module, and invoke its service commands

Group
Manager

Replica

Module A Module B
Service Interface 1

Listener Interface 1 Listener Interface n

Legend:Legend:

...
... en ,1

Command l of service interface m
Event j of listener interface n

en , je1,ie1,1

c1,1 c1,k

cm ,l
en , j

Module C
Service Interface m

cm ,1 cm ,l

getService()

Figure 5: A generic view of the replica-to-module
interaction interfaces.

Group ManagerGroup Manager

Module X1 Module X2

Replica 2

E
G

M
I

In
te

rf
a

ce

Replica 1

Module Y1 Module Y2

LeaderLeader

External
Entity 1

External
Entity 2

E
G

M
I In

te
rfa

ce

Dependable
Registry

lookup()

bind()
lookup()

bind()

Legend:Legend:
External entity interaction
Registry interactions

Figure 6: External entity to module interactions.

(middle), or it may just listen to its events (left), or just
invoke its service commands (right).

Establishing the connections between the replica and its
associated set of protocol modules is done through the Group-

Manager object. The GroupManager wraps the protocol mod-
ules and acts as an interface between the modules and the
replica. Initially, when the replica requests group commu-
nication support it will invoke the getGroupManager() factory
method, passing its own reference (this). Given this ref-
erence, the GM establishes upcall connections between the
replica and the modules whose listener interfaces are im-
plemented by the replica. On the other hand, establishing
connections between the replica and the service interfaces
of modules are done on-demand by the replica itself. This
is accomplished using the GroupManager.getService() method
shown in Fig. 5. Given a reference to the service interface
of a module, the replica can easily invoke its commands.

External Entity to Module Interactions Protocol
modules may also interact directly with (possibly replicated)
external entities. For instance, a protocol module could in-
voke methods on an external entity or vice versa. This in-
teraction style is useful for a number of purposes, such as
event logging, event notifications or triggering some action,
e.g. recovery or upgrade [8].

External entities and modules can interact in both direc-
tions, as shown in Fig. 6. External Entity 1 invokes Mod-
ule X to perform some operation implemented by the mod-
ule, whereas External Entity 2 allows a module to invoke
methods on it to perform some operation. Interaction with
external entities relies on the dependable registry for looking
up the reference of the external entity (or the module) with
which to communicate. Prior to such lookups, the receiving
end must bind() its reference in the dependable registry. The
two interactions shown in Fig. 6 are both based on EGMI,
and hence the receiving end must include the ExternalGMI-

Module in its set of protocol modules.

G
roup M

anager
Replica

ZModule

Link BootstrapConstructor
(XService, YService)

@Substitutes(YService, YListener)

XListener YListener

XModule YModule

YService

XService YService

LegendLegend Mandatory

Optional

YListener

ZService

new ZModule(xs, ys)

Module Factory

complete(object)addListener(object)

getGroupManager(replica)getService(ZService)

Module repository

Delay

Figure 7: The module factory and interfaces used
for module construction.

5. DYNAMIC MODULE CONSTRUCTION
The group manager encapsulates the set of protocol modules
associated with an application. Protocol modules are config-
ured using an application-specific replication policy [8]. The
policy supports specifying the set of protocol modules to be
constructed, as well as supplying configuration parameters
to the modules, e.g. timeout values and redundancy level.

Protocol modules are constructed dynamically at runtime
based on the policy of the application requesting a proto-
col composition. This is essentially all that an application
developer needs to know about the construction of protocol
modules. However, a module developer needs to have more
intimate knowledge of the architecture which simplifies the
following tasks:

• Automatic construction of protocol modules.

• Establishing links between dependent modules.

• Linking the replica with its dependent modules.

• Reconfiguration of links for module substitution.

The dynamic construction facility requires that module im-
plementations adhere to these rules:

1. Must contain a single constructor, whose signature is
the set of services required by the module.

2. Must implement the Link interface.

3. May implement the Bootstrap interface.

4. May implement listener interfaces of other modules.

5. May declare that it substitutes the services/listeners
provided by another module.

Fig. 7 illustrates the rules in terms of interfaces. Solid boxes
indicate required interfaces, while dashed boxes denote op-
tional interfaces which may be implemented by a module
depending on its requirements.

Module Instantiation As shown in Fig. 7, ZModule re-
quires two other services, XService and YService, which are
implemented by XModule and YModule, respectively. These
two modules must have been constructed prior to ZModule,
and are thus passed to the ZModule constructor. The module
factory use reflection [1, Ch.16] to examine the constructor
signature of the ZModule to find its required dependencies,

and queries the module repository to obtain those module in-
stances. If a required module is not found, it will be created
on-demand and stored in the repository.

Construction follows the bottom-up order specified in the
replication policy. In Fig. 2, this means that the Dispatcher-

Module is constructed first, followed by the MembershipModule

and so on. Note that the DispatcherModule does not depend
on other modules, but connects with the daemon.

Link Configuration Once all the protocol modules as-
sociated with an application have been instantiated, links
between the modules are established by the module fac-
tory through the mandatory Link interface. The addListener()

method shown in Fig. 7 serves two primary purposes:

• Establish upcall links with other modules; links are
only established with modules implementing the lis-
tener interface(s) associated with the module.

• Perform bootstrap operations that cannot be perform-
ed during module construction.

In Fig. 7 the object passed to the addListener() method may
be either the replica object or a module. Note that the
replica object is always passed to the addListener() method,
independent of it implementing the listener interface asso-
ciated with the module. Thus the module can exploit the
replica reference type as a means to obtain necessary con-
figuration data from the replication policy, e.g. timeout val-
ues, to configure/bootstrap the module. If the replica object
does not implement the listener interface of the module, it
cannot receive any events from the module. Furthermore,
the addListener() method may be invoked several times for
distinct modules, allowing multiple modules to receive the
same set of events. The order in which addListener() is in-
voked follows the construction order defined above, with the
replica object passed in last.

Bootstrapping Some modules may need to perform ad-
ditional bootstrap operations after all the links have been
established. The final task of the module factory is to find
modules that implement the optional Bootstrap interface, and
invoke its complete() method to finalize bootstrapping. For
instance, the application could configure its replication pol-
icy to automatically join() its group during the bootstrap
phase, simplifying the replica implementation even further.
Joining the group requires that all the links have been set
up between all the protocol modules, and hence it cannot
be bootstrapped through the Link interface.

Event Interception As advocated initially in this pa-
per, some modules need to intercept commands/events origi-
nated in other modules. Such interception may be necessary
for a number of reasons, e.g. if delivery of events must be de-
layed until after the intercepting module has completed its
tasks. For example, a total ordering module needs to delay
the delivery of messages pending agreement among group
members on the sequence in which to deliver messages.

Modules that wish to intercept the commands/events of
another module must declare that it substitutes the other
module. The @Substitute declaration uses annotations [1,
Ch.15] to indicate which service and listener interfaces to
substitute. As shown in Fig. 7, the ZModule substitutes
both interfaces associated with the YModule. The module
factory will analyze the substitute declarations and reconfig-
ure the links accordingly, hiding the presence of the YModule

from other modules and the replica. Implementing a module
which substitutes another can be accomplished by inheriting
from the substituted module, or by wrapping it.

6. CONCLUSIONS AND FUTURE WORK
In this paper, the design and implementation of a proto-
col composition framework for Jgroup/ARM has been pre-
sented. The main feature is the direct communication be-
tween protocol modules, saving costly processing in inter-
mediate modules. It also supports dynamic construction of
protocol compositions based on a simple configuration file.
The protocol composition problem seems to lend itself nicely
to new ideas from aspect-oriented programming and anno-
tations, and we aim to pursue these topics in future work.

7. REFERENCES
[1] K. Arnold, J. Gosling, and D. Holmes. The Java

Programming Language. Addison-Wesley, 2005. 4th ed.

[2] B. Ban. JavaGroups – Group Communication
Patterns in Java. Technical report, Dept. of Computer
Science, Cornell University, July 1998.

[3] J. Dowling and C. Arad. Kompics Programming
Manual, Apr. 2009. Version 0.4.1.

[4] M. Fowler. Inversion of Control Containers and the
Dependency Injection pattern, Jan. 2004.
http://www.martinfowler.com/articles/injection.html.

[5] M. Hayden. The Ensemble System. PhD thesis, Dept.
of Computer Science, Cornell University, Jan. 1998.

[6] M. A. Hiltunen and R. D. Schlichting. The Cactus
Approach to Building Configurable Middleware
Services. In Proc. Workshop on Dep. Sys. Middleware
and Group Comm., Nuremberg, Germany, Oct. 2000.

[7] N. C. Hutchinson and L. L. Peterson. The x -Kernel:
An architecture for implementing network protocols.
IEEE Trans. Software Eng., 17(1):64–76, Jan. 1991.

[8] H. Meling. Adaptive Middleware Support and
Autonomous Fault Treatment: Architectural Design,
Prototyping and Experimental Evaluation. PhD thesis,
Norwegian University of Science and Technology,
Department of Telematics, May 2006.

[9] H. Meling, A. Montresor, B. E. Helvik, and
O. Babaoglu. Jgroup/ARM: a distributed object group
platform with autonomous replication management.
Software Prac. Exper., 38(9):885–923, July 2008.

[10] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a
flexible protocol kernel supporting multiple
coordinated channels. In Proc. 21st ICDCS, Apr. 2001.

[11] A. Montresor. System Support for Programming
Object-Oriented Dependable Applications in
Partitionable Systems. PhD thesis, Dept. of Computer
Science, University of Bologna, Feb. 2000.

[12] O. Rütti, P. T. Wojciechowski, and A. Schiper. Service
Interface: A New Abstraction for Implementing and
Composing Protocols. In Proc. 21st ACM Symp. on
Applied Computing, Dijon, France, Apr. 2006.

[13] P. Urbán, X. Défago, and A. Schiper. Neko: A single
environment to simulate and prototype distributed
algorithms. Journal of Information Science and
Engineering, 18(6):981–997, Nov. 2002.

[14] R. van Renesse. Masking the Overhead of Layering. In
Proc. 1996 ACM SIGCOMM, Aug. 1996.

[15] R. van Renesse, K. P. Birman, and S. Maffeis. Horus:
A Flexible Group Communication System.
Communications of the ACM, 39(4):76–83, Apr. 1996.

	1 Introduction
	1.1 Introduction to Protocol Architectures

	2 The Jgroup/ARM Middleware
	3 Protocol Modules
	4 Module Interactions
	5 Dynamic Module Construction
	6 Conclusions and Future Work
	7 References

