
A Distributed Approach to Autonomous Fault Treatment in Spread

Hein Meling and Joakim L. Gilje
Department of Electrical Engineering and Computer Science

University of Stavanger, 4036 Stavanger, Norway
Email: hein.meling@uis.no | jgilje@jgilje.net

Abstract

This paper presents the design and implementation of the
Distributed Autonomous Replication Management (DARM)
framework built on top of the Spread group communication
system. The objective of DARM is to improve the depend-
ability characteristics of systems through a fault treatment
mechanism. Unlike many existing fault tolerance frame-
works, DARM focuses on deployment and operational as-
pects, where the gain in terms of improved dependability is
likely to be the greatest.

DARM is novel in that recovery decisions are distributed
to each individual group deployed in the system, eliminat-
ing the need for a centralized manager with global infor-
mation about all groups. This scheme allows groups to per-
form fault treatment on themselves. A group leader in each
group is responsible for fault treatment by means of replac-
ing failed group members; the approach also tolerates fail-
ure of the group leader. The advantages of the distributed
approach is: (i) no need to maintain globally centralized
information about all groups which is costly and limits scal-
ability, (ii) reduced infrastructure complexity, and (iii) less
communication overhead. We evaluate the approach exper-
imentally to validate its fault handling capability; the re-
covery performance of a system deployed in a local area
network is evaluated. The results show that applications
can recover to their initial system configuration in a very
short period of time.

1. Introduction

A common technique used to improve the dependabil-
ity characteristics of systems is to replicate critical system
components whereby their functions are repeated by multi-
ple replicas. Replicas are often distributed geographically
and connected through a network as a means to render the
failure of one replica independent of the others. However,
the network is also a potential source of failures, as nodes
can become temporarily disconnected from each other, in-

troducing an array of new problems. The majority of pre-
vious projects [2, 11, 5, 3, 15] have focused on the provi-
sion of middleware libraries aimed at simplifying the de-
velopment of dependable distributed systems, whereas the
pivotal deployment and operational aspects of such systems
have received very little attention. In traditional fault toler-
ance frameworks, one relies on the system administrator (or
the application) being able to replace failed replicas before
they have all been exhausted, which would otherwise cause
a system failure.

In this paper we present a novel architecture for dis-
tributed autonomous replication management (DARM),
aimed at improving the dependability characteristics of sys-
tems through a self-managed fault treatment mechanism
that is adaptive to network dynamics and changing require-
ments. Consequently, the architecture improves the deploy-
ment and operational aspect of systems, where the gain in
terms of improved dependability is likely to be the great-
est, and also reduces the human interactions needed. Au-
tonomous fault treatment in DARM is accomplished by
mechanisms for localizing failures and system reconfigu-
ration. Reconfiguration is handled by DARM without any
human intervention, and according to application-specific
dependability requirements. Hence, the cost of develop-
ing, deploying and managing highly available applications
based on Spread/DARM can be significantly reduced.

The architecture builds on our previous experience [8,
10] with developing a prototype that extends the Jgroup [11]
object group system with fault treatment capabilities. The
new architecture is implemented on top of the Spread group
communication system (GCS) [2] and relies on a distributed
approach for replica distribution (placement), thereby elim-
inating the need for a centralized replication management
infrastructure used in our previous work and also in other
related works [18, 19, 17].

Distributed replica placement enables deployed appli-
cations (implemented as groups) to implement autonomic
features such as self-healing by performing fault treatment
on themselves, rather than having a (replicated) central-
ized component monitoring each deployed application. The

fault treatment mechanism represents a non-functional as-
pect and to separate it from application concerns it is im-
plemented as a separate component (a factory) and a small
library that can easily be linked with any Spread appli-
cation. DARM provides automated mechanisms for per-
forming management activities such as replica distribution
among sites and nodes, and recovery from replica failures.
DARM is also able to restore a given redundancy level in
the event of a network disconnection.

DARM offers self-healing [12], where failure scenar-
ios are discovered and handled through recovery actions
with the objective to minimize the period of reduced failure
resilience; self-configuration [12], where objects are relo-
cated/removed to adapt to uncontrolled changes such as fail-
ure/merge scenarios, or controlled changes such as sched-
uled maintenance (e.g. software and OS upgrades).

Organization: Section 2 provides some background and
in Section 3 presents the DARM architecture. In Section 4
an experimental evaluation is provided for two separate
Spread configurations. Section 5 compares DARM with re-
lated work and Section 6 concludes.

2. Background and Assumptions

The context of this work is a distributed system compris-
ing a collection of nodes connected through a network and
hosting a set of clients and servers. The set of nodes, N , that
may host application services and infrastructure services, in
the form of replicas, is called the target environment. The
set N is comprised of one or more subsets, Ni, representing
the nodes in site i. Sites are assumed to represent different
geographic locations in the network, while nodes within a
site are in the same local area network. A node may host
several different replica types, but it may not host two repli-
cas of the same type.

The DARM implementation presented in this paper uses
the Spread GCS [2]. A GCS enables processes (clients
in Spread terminology) with a common interest to join a
shared group for communications purposes, and can guar-
antee certain reliability properties (e.g. total order delivery)
for the communication services it provides. Spread also
provides a group membership service. Therefore we as-
sume the same system and failure model as the one assumed
by Spread. Long-lasting network disconnections may occur
in which certain communication failure scenarios may dis-
rupt communication between multiple sets of replicas form-
ing partitions. Replicas in the same partition can commu-
nicate, whereas they cannot communicate with replicas in
other partitions. When communication between partitions
is re-established, we say that they merge. Replicas may also
crash, whereby they simply stop generating output. The
Spread GCS follows the open group model, meaning that a
client is not required to join a specific group before sending

messages to that group. This property is utilized by DARM.
Spread consists of two main parts, a daemon and the

Spread library, libspread, as illustrated in Figure 1. The
Spread daemon is used to forward messages between group
members (Spread clients) whereas the Spread library is used
for developing Spread clients. The library includes func-
tions for connecting to the daemon as well as communicat-
ing with other Spread clients.

Node B

libspread

Spread

Client

Spread

Daemon

Node A

libspread

Spread

Client

Spread

Daemon
Network

Figure 1. Spread client-daemon relationship.

The Spread daemon is not required to be running on each
node in a distributed system as Figure 1 shows, however it
is a typical configuration when using Spread for replication.
Hence in this paper we assume that each node is running a
Spread daemon. The daemon uses a configuration file to
discover other daemons in the system. A Spread network
may span several network sites. Within each site, the dae-
mon will communicate with its neighboring daemons using
either broadcast or multicast traffic depending on the capa-
bilities of the LAN environment. However, unicast is used
for communication between daemons in different sites. For
the latter case, a master daemon is selected to mediate mes-
sages on behalf of all daemons within a site.

3. Architecture of DARM

Figure 2 shows a simple deployment scenario where
three applications, A, B, and C are replicated and allocated
to various nodes in the system. Notice that a single node
may host several replicas of different types.

To support DARM, all nodes must be running a fac-
tory (in addition to the Spread daemon), and the application
must be linked with the DARM library, called libdarm.
The factory is responsible for creating replicas on behalf
of libdarm when DARM requires this. As Figure 3
show, libdarm is intended to replace libspread when
viewed from a Spread client perspective. That is, libdarm
actually wraps around libspread intercepting connec-
tion and membership messages. In addition, libdarm pro-
vide several functions needed to dynamically configure the
policies for autonomous operation of each group.

Group A

Clients

Group B Group C

Factories

Network

Node

Group leader

Factory leader

Figure 2. A simple deployment scenario with three DARM applications.

Node

DARM

Factory
libdarm

Spread

Daemon

DARM

Client

libspread

Figure 3. DARM client dependencies.

The DARM library can be considered an agent acting on
behalf of DARM; it is collocated with each replica and is
responsible for collecting and analyzing failure information
obtained from view change events generated by the Spread
group membership service, and to initiate on-demand sys-
tem reconfiguration according to the configured policies. It
is also responsible for removal of excessive replicas. Over-
all, the interactions among the components shown in Fig-
ure 3 enable the DARM agent to make proper recovery de-
cisions, and allocate replicas to suitable nodes in the target
environment.

Figure 4 shows an example of a common failure-
recovery sequence, in which node N1 fails, followed by
a recovery action causing DARM to install a replacement
replica at node N4. In the centralized ARM implementa-
tion [8], the recovery action was performed by a centralized
replication manager (RM), which would have a complete

view of all installed applications within the target environ-
ment. In DARM, the factory is responsible for recomputing
the replica allocations in response to a failure, based on pol-
icy requirements and the current load on the various nodes.

N1

N2

N3

N4
V
2

V
0

Fault treatment

pending

createReplica()

V
3

Legend: Group Leader View number i : V
i

V
1

Join

Figure 4. A crash failure-recovery sequence.

3.1. The Factory

The main purpose of the factories is to enable installa-
tion of service replicas (Spread/DARM clients) on demand.
In addition, the factories keep track of the load on the local
node, and also the availability status of nodes. This infor-
mation is used to determine the best node on which to place
replicas.

The factories all join a common factory group immedi-
ately after its initialization and thus depend on the Spread
daemon. Hence the factory must be started after the dae-
mon, but before starting any replicated services. The fac-
tories will send and receive factory internal messages using
the factory group, in addition to receiving replica create re-

quests from libdarm. The factory does not maintain any
state that needs to be preserved in case of factory failures.
Thus the factory can simply be restarted after a node repair
and support new replicas.

A factory leader is selected amongst the members of the
factory using the total ordering of members received from
the group membership service, i.e. the first member in the
list is selected. Every factory keeps track of which facto-
ries are running and at which site they physically belong.
The factory leader uses this information along with load in-
formation when it is asked to create a replica. The active
configuration is kept at each factory since every factory has
to be prepared to act as a leader.

As Figure 5 shows, the factory group receives create
replica requests from libdarm clients; all factory replicas
receive such requests, however only the factory leader is in-
volved in deciding on which site and node a new replica
should be created. When the factory leader has decided
which node should start a new replica, it will send a pri-
vate message to the factory running at that node to com-
plete the request from libdarm. The factory leader uses
a replica placement policy (see Section 3.2) to decide on
which node a new replica should be created. To help the
factory make informed decisions on where to place a new
replica, libdarm attaches information about its associated
group’s current configuration when sending a request to the
factory group. This information includes a list of nodes cur-
rently running a replica (obtained from the current view),
and the number of replicas in each site.

F
a

c
to

ry

l
i
b
d
a
r
m

F
a

c
to

ry

createReplica()

createReplicaOnNode()

l
i
b
d
a
r
m

l
i
b
d
a
r
m

F
a

c
to

ry

Factory leader
Node 1

Node 2

Node 4

Node 5

Node 6

Node 3

Figure 5. Create replica request.

3.2. The Replica Placement Policy

In DARM several policy types are defined to support
the autonomy properties: (1) the replica placement policy,
(2) the remove policy, and (3) the fault treatment policy, all
of which are specific to each deployed service. Alternative
policies can be added to the system.

The purpose of a replica placement policy is to describe
how service replicas should be allocated onto the set of

available sites and nodes. Two types of input are needed to
compute the replica allocations of a service: (1) the target
environment, and (2) the number of replicas to be allocated.
The latter is configurable and is determined at runtime. The
placement policy in DARM is as follows:

1. Find the site with the least number of replicas of the
given type.

2. Ignoring nodes already running the service, find the
node in the candidate site with the least load.

This placement policy will avoid collocating two replicas
of the same service on the same node, while at the same
time it will disperse the replicas evenly on the available
sites. In addition, the least loaded nodes are selected in
each site. The same node may host multiple distinct ser-
vice types. The primary objective of this policy is to ensure
available replicas in all likely network partitions that may
arise. Secondly, it will load balance the replica placements
evenly over each site. The placement policy is implemented
in the factory.

3.3. The Replica Remove Policy

DARM may optionally be configured with a remove pol-
icy to deal with any excessive replicas that may have been
installed. The reason for the presence of excessive repli-
cas is that during a partitioning, a fault treatment action
may have installed additional replicas in one or more parti-
tions to restore a minimal redundancy level. Once partitions
merge, these replicas are in excess and no longer needed to
satisfy the dependability requirements of the application.

N1

N2

N3

N4

Partitioning

V
2

V
1

V
0

FT pending

createReplica() V
3

Leaving

V
4

V
5

Merging

Legend: Group Leader View number i : V
i

Figure 6. A sample network partition failure-
recovery scenario where Rmax := 3 and
Rmin := 2. The partition separates nodes
{N1,N2} from {N3,N4}.

Let V denote a view and |V| its size. If |V| exceeds
the maximum redundancy level Rmax for a duration longer
than a configurable time threshold Trm, libdarm will re-
quest one excessive replica to leave the group. If more than
one replica needs to be removed, each remove is separated

by Trm seconds. The choice of which replicas should leave
is made deterministically based on the view composition,
enabling decentralized removal. This mechanism is shown
in Figure 6, where the dashed timelines indicate the duration
of the network partition. After merging, libdarm detects
one excessive replica, and elects N4 to leave the group. The
remove policy is implemented in libdarm.

3.4. The Fault Treatment Policy

Each service is associated with a fault treatment pol-
icy, whose primary purpose is to describe how the redun-
dancy level of the service should be maintained. Two inputs
are needed: (1) the target environment, and (2) the maxi-
mum (Rmax) and minimal (Rmin) redundancy level of the
service. The current fault treatment policy called Keep-
MinimalInPartition has the objective to maintain service
availability in all partitions, i.e. to maintain Rmin in each
partition that may arise. A recovery delay, Trec, is used
to avoid premature activation of the fault treatment mech-
anism. Alternative policies can easily be defined, e.g. to
maintain Rmin in a primary partition only. The fault treat-
ment policy is implemented in libdarm using the factory
to create replacement replicas on-demand.

3.5. The DARM Library

A Spread/DARM client is linked with libdarm to en-
able DARM functionality. It is primarily the leader replica
that performs operations using libdarm, e.g. to initiate
recovery. Only a single instance of an application service
needs to be started manually (or through a management in-
terface) to bootstrap a replicated service. That is, once an
application has been started, libdarm will request that the
configured number of replicas be started using the facto-
ries. This enables automatic deployment of replicas within
the configured distributed system.

The library is designed to be compatible with the
Spread 4.0 C API. That means all functions that are avail-
able as SP * functions in libspread have an identical
function called DARM * with the exact same function sig-
nature and return values. This obviously requires minor
modifications and recompilation of existing Spread clients
to take advantage of libdarm. This is due to the flat
namespace in the C programming language used to im-
plement DARM. There are ways to circumvent this draw-
back [13], but this has not been our priority.

Most functions with a DARM-prefix are just forwarded
to the corresponding SP-function. The functions that
do DARM related processing are DARM connect() and
DARM receive(); these are discussed below. In addition,
several functions are provide for runtime configuration,
e.g. DARM set minimum(), DARM set maximum() and

DARM set recovery delay(). These functions are used to
configure DARM to maintain a minimum/maximum num-
ber of group members and to set the recovery delay.

For DARM connect(), libdarmwill intercept the con-
nection call to verify and finalize the runtime configuration
of DARM, and also joining the DARM private group asso-
ciated with the current application. When connecting, client
requests to override membership messages will be ignored,
since membership messages are essential for monitoring the
current state of the group and is required by DARM.

The DARM receive() function will call SP receive(),
and after receiving a message, DARM receive() will deter-
mine if the message belongs to the DARM private group or
is an application message. Application messages are sim-
ply forwarded to the DARM client, while DARM messages
are handled within libdarm. To avoid returning control to
the client without any message, libdarm will continue to
call SP receive() until an application message is received,
processing any intermediate DARM messages internally.

Membership messages delivered to the DARM private
group are used to decide whether fault treatment is needed.
For example, if a membership message is a join message,
the replica count is increased by one. The DARM leader
will either ask the factory group to create a new replica if the
replica count is lower than the minimum threshold, or ask
a member of its own group to self-terminate if the replica
count is above the maximum threshold. The DARM library
will elect a leader using the same approach as used by the
factories.

4. Experimental Evaluation

The recovery performance of Spread/DARM is evalu-
ated experimentally with respect to network disconnection
events. In this paper focus is on the duration required to re-
cover to the configured minimal redundancy level, Rmin, in
each network partition that arise in the fault injection cam-
paign. In the following, we present the target system for the
experiments followed by our findings.

4.1. Target System

Figure 7 shows the target system for our measurements.
It consists of three sites (network segments) denoted x, y
and z, all of which are on the same LAN1. Each site has
three nodes denoted x1, x2, x3, etc. Hence, a total of nine
nodes are used, each of which run the Spread daemon and
the DARM factory. In addition, an external node runs a fault
injector application using a modified version of the Spread
tool spmonitor to inject network disconnections on the
nodes in the system to emulate partition failures.

1Although the nodes are on the same LAN, Spread has the ability to
simulate network partitioning faults using the spmonitor tool.

Site x

x1

Factory

x2

Factory

x3

Factory

Site z

z1

Factory

z2

Factory

z3

Factory

Site y

y1

Factory

y2

Factory

y3

Factory

Fault

injector

Network
Inject(xy | z)

E1 E3

E2

E5E4

E6

E

E

Replacement replica

Replica

Figure 7. Target system for the experiments,
also illustrating a network partition scenario.

A simple evaluation service, that sends a small group
internal message every second, is deployed in the target
system following the policy described in Section 3.2, with
Rmax := 4 and Rmin := 3, i.e. the service will have
three replicas initially. Furthermore, the DARM fault treat-
ment policy (see Section 3.4) will try to maintain at least
three replicas in each partition. Finally, if |V| > Rmax,
libdarm will determine if the local replica should to be
removed due to excessive replicas. DARM will continue to
remove replicas, one at a time, until the expression evalu-
ates to false. The recovery and remove delays are both set
to 2 seconds.

The fault injector application randomly selects the site
to isolate from the other two sites and invokes the modified
spmonitor, thereby creating a network partition. Then,
once all partitions have recovered to their specified mini-
mal redundancy level, the fault injector will inject a recon-
nection event to merge the network partitions into a fully
connected network.

4.2. Experimental Results

In the following, DARM is tested in two different Spread
configurations, denoted default and fast. The fast Spread
configuration requires recompilation after adjusting various
timeouts that are hardcoded into Spread; the fast timeout
parameters are given in [1]. As the experiments shows,
these changes have a significant impact on the recovery
performance of DARM. In both configurations, 200 itera-
tions with partition/merge injection events were performed.
All relevant events such as partition injection, merge in-
jection, replica creation/removal and membership changes
were logged for each of the sites. This gives us 600 mea-

surements for merge events, since each site measures the
delays for each iteration. For the partition measurements
there are fewer measurements since recovery is not always
needed when a partition occurs. This can happen when
the partition is injected on a fully connected network with
|V| = 4 replicas; this may result in one partition already
containing three replicas and thus no recovery is needed.

Results for the fast Spread configuration is shown in Fig-
ure 8. The plots in the top row shows the time of the various
measured events in the recovery cycle after the injection of
a network partition (which occur at time 0). The plot to the
left shows the results for the partition with two live replicas,
where one new replica is created to recover to the minimal
redundancy level Rmin = 3, whereas the plot on the right
shows the results of the partition with only one live replica
in need of two new replicas to reach Rmin = 3. The results
are sorted according to the total time needed to reach the
final view (fully recovered). Hence, the right-most curves
(in the top row plots) are the empirical cumulative distri-
bution function (CDF) of this time. The proceeding curves
show their relative contribution to the recovery delay. The
partition detection curve shows the time it takes to detect
that a network partition has occurred from the time of the
actual injection; this is the part where most of the variabil-
ity is introduced. The time to create a new replica is nearly
deterministic and is due to the 2 second recovery delay. Cre-
ating two replicas introduces an additional 2 second delay
as shown in the right-most plot. These delays are used to
avoid that DARM triggers unnecessary recovery actions due
to transient disconnections. The plots in the middle row of
Figure 8 show the density estimate for the same observa-
tions. Note that the time between the creation of a new
replica and the installation of the final view is very small,
hence the view agreement delay is not shown in the plots.

The bottom left plot in Figure 8 shows the time of the
various events in the remove cycle after the injection of a
network merge. As for the partition case the results are
sorted according to the last curve, the total time needed to
reach the final merged view. The merge detection curve is
the time that Spread takes to report that the network has
been reconnected. The merge event will render the network
fully connected with |V| = 6 replicas; three in each of the
previous partitions. Hence, DARM will remove two of the
replicas to reach the Rmax = 4 threshold. Each removal is
separated by the 2 second remove delay. The bottom right
plot shows the density estimates for the same observations.

The same experiments were also performed for the de-
fault Spread configuration as shown in Figure 9. Like in the
fast configuration, most of the variability is introduced in
the partition/merge detection phase. The replica create and
final view are strongly correlated to the partition detection
delay. Another thing to note is that the default configuration
has a significantly longer detection time both for partition

!!
! !!

!!
!!

!!
!!
!!
!!
! !!

!!
!!
!!
! !!

! !!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!
!!
! !!

!!!
!!

!!
! !! !!

!!!
!

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
5

0
1

0
0

1
5

0
2

0
0

!"#$%$%&'()*(+%,-(#-.+%/"01(2("33-34(!(5-$-/$%&'("'3(#-/&,-#6($%7-0()892:;4

Time since partition injected (s)

! Partition detection

Replica create

Final view !!
!!

!!
!!
! !! !!

! !!
!!
!!
!!
!!
!!
!!
!!
!!

!!!
!!
!!
!!
!!
!!
!!
!!

!!!
!!

!!!
!!

!!!
!!
!!
!!
!!
!!
! !!!
! !!!
!!

!! !!!!
!! !!!

!!
!!
!!
!!
!!

!!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

!!!!
!!
!!
!!

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

!"#$%$%&'()*(+%,-(#-.+%/"0(1("22-23(!(4-$-/$%&'("'2(#-/&,-#5($%6-7()89*:;3

Time since partition injected (s)

! Partition detection

Replica create

Final view

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
1

2
3

4
5

6

!"#$%$%&'()*(+%,-(#-.+%/"01(2("33-34(!(5-'0%$6(-0$%7"$-0(8&#(3-$-/$%&'("'3(#-/&,-#6($%7-0()9:2;<4

Time since partition injected (s)

Partition detection, (!!=0.9, !!=0.261)

Replica create, (!!=2.9, !!=0.209)

Final view, (!!=3, !!=0.304)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
1

2
3

4
5

!"#$%$%&'()*(+%,-(#-.+%/"0(1("22-23(!(4-'5%$6(-5$%7"$-5(8&#(2-$-/$%&'("'2(#-/&,-#6($%7-5()9:*;<3

Time since partition injected (s)

Partition detection, (!!=0.9, !!=0.284)

Replica create, (!!=2.9, !!=0.288)

Final view, (!!=5, !!=0.273)

!!!!!
!!!!!!
! !!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!! !!!!!

!!!!!!
!!!!!!
!!!!!
!! !!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!!!
!!!!!
!!!!!
!!!!!
!!! !!!!!!
!!!!!
!!!!!
!!!!!
!!! !!!!!!
!!!!!
!!!!!
!!!!!

!!!!!
!!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!!!
! !!!!!!
! !!!!! !!!!!!
! !!!!!!
! !!!!!!
!!!!!
!!!!!
!!!!!
! !!!!!

!!!!!
!!!!!!!

! !!!!!
!!!! !!! !!!!!

!!!!!!!

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

!"#$%&'()"&*"(!(+"#",#-%.(/.0(&")%1"(#-)"2(3!45667

Time since merge injected (s)

! Merge detection

Replica remove

Merged view

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0
2

4
6

8
1

0

!"#$%&'()"&*"(!(+",-.#/("-#.)0#"-(1%&(2"#"3#.%,(0,2(&")%4"(#.)"-(5!67889

Time since merge injected (s)

Merge detection, (!!=2, !!=0.226)

Replica remove, (!!=4.1, !!=0.23)

Merged view, (!!=6.1, !!=0.22)

Figure 8. Fast Spread configuration

!!
!!

!!
! !!

!!
!!
!!
!!!
!!
!!
!!
!!
!!

! !!
!! !!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!!!!!!!
!!
!!
!! !!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!!!
!!

!!!
!!
!!
!!
!!
!!
!!
!! !!
!!
!!

! !! !!
!!
!!
!!
!!
!!
!!
!!
!!
!! !!!
!!
!!
!!
!!
!!
!!
!!
!!
!! !!
!!
!! !! !!
!!

! !!
!! !! !!
!!
!!

!!
! !!

!!
!!

!!
!!

11 12 13 14 15 16 17 18 19

0
5

0
1

0
0

1
5

0
2

0
0

!"#$%$%&'()*(+%,-(#-.+%/"01(2("33-34(!(5-$-/$%&'("'3(#-/&,-#6($%7-0()892:;4

Time since partition injected (s)

! Partition detection

Replica create

Final view !!
! !!

!!!
!!
!!
!!!
!!
!!
!!
!!
!!

! !!
! !!!

!!!
!!
!!
!!
!!
! !!

!!
!!!

!!
!!
!!

!!!
! ! !!!

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!! !!!

!!
!! !! ! !!!!

! !!!
!!

! !!
!!

!!!!!
!!
!!!

!!!
! !! !

11 12 13 14 15 16 17 18 19

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

!"#$%$%&'()*(+%,-(#-.+%/"0(1("22-23(!(4-$-/$%&'("'2(#-/&,-#5($%6-7()89*:;3

Time since partition injected (s)

! Partition detection

Replica create

Final view

11 12 13 14 15 16 17 18 19

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

!"#$%$%&'()*(+%,-(#-.+%/"01(2("33-34(!(5-'0%$6(-0$%7"$-0(8&#(3-$-/$%&'("'3(#-/&,-#6($%7-0()9:2;<4

Time since partition injected (s)

Partition detection, (!!=12.3, !!=0.535)

Replica create, (!!=14.3, !!=0.532)

Final view, (!!=14.4, !!=0.548)

11 12 13 14 15 16 17 18 19

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

!"#$%$%&'()*(+%,-(#-.+%/"0(1("22-23(!(4-'5%$6(-5$%7"$-5(8&#(2-$-/$%&'("'2(#-/&,-#6($%7-5()9:*;<3

Time since partition injected (s)

Partition detection, (!!=12.6, !!=0.938)

Replica create, (!!=14.6, !!=0.943)

Final view, (!!=16.7, !!=0.983)

!!!!!
!!!!!
!! !!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!!
!!!!!
! !!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!!!!! !!!!!
!!!!!!!!!! !!!!!!!!!!!! !!!!!! !!! !! !! !!!!!!

! !!! !!! !!!!!
!!!!!
!!!!! !!! !!! !!!!! !! !! !!!!!!!!!!!
!!!!!
!!!!!! !!!! !! !! !!!!!
!!! !!! !!! !!!!!
!!!!!
!!!!!
!!!!!
!! !! !! !!!!!
!!!!!
!!!!!
!!!!!
!!!! !!!!!!!!! !!!!!
!!!!!
!!! !!!! !!!! !!!!!! !! !! !! !! !!! !!! !!!!! !! !! !!!!!
!!!!!

!!! !!!!!
!!!!! !!! !!! !! !!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!! !!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!!!
!!!!!!
!!!!!!

! !! !! !!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!!!!!
!! !!! !!! !!!!!! !!!! !!!! !!!!!
!!!! !!!!!

!!!! !! !! !!!!! !!!!!! !!!!!
!!!! !!!!!!!!! !!!!!! !!!!!

!!!! !!!!!
! !!!!!!!!
!!!!

42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

!"#$%&'()"&*"(!(+"#",#-%.(/.0(&")%1"(#-)"2(3!45667

Time since merge injected (s)

! Merge detection

Replica remove

Merged view

42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

!"#$%&'()"&*"(!(+",-.#/("-#.)0#"-(1%&(2"#"3#.%,(0,2(&")%4"(#.)"-(5!67889

Time since merge injected (s)

Merge detection, (!!=43.2, !!=0.483)

Replica remove, (!!=45.2, !!=0.483)

Merged view, (!!=47.3, !!=0.573)

Figure 9. Default Spread configuration

and merge; these delays are due to Spread being designed
for WAN configurations mandating longer timeouts. The
mean (µ) and standard deviation (σ) for the various events
are provided in the legend of the density plots. Although
the default configuration has a very long detection time, the
DARM recovery delay is fixed to 2 seconds. In the default
configuration, Spread also has a much larger variance in its
detection phases, whereas the fast configuration has very lit-
tle variance. This is illustrated by the narrow density curves
for the fast configuration, as opposed to the default config-
uration where the density curves are much wider.

In summary, the experimental evaluation has demon-
strated that recovery from network partition failures by en-
suring sufficient redundancy levels at all times is easily han-
dled by DARM in a robust and timely manner.

5. Related Work

Fault treatment techniques were first introduced in the
Delta-4 project [18]. Delta-4 was developed in the context
of a fail-silent network adapter and does not support net-
work partition failures. Due to its need for specific hardware
and OS environments, Delta-4 has not been widely adopted.
Cristian [4] sketched a service availability concept where
services are sorted according to their importance (vital vs
non-vital), and allocated to processors with the objective to
maintain availability of the most important services should
a processor fail. Failed vital services were to be restarted
on another processor. Unlike recent approaches, Cristian
made the assumption that services were not replicated; also
no implementation were presented.

None of the most prominent Java-based fault tolerance
frameworks [3, 2] offers mechanisms similar to those of
DARM, to deploy and manage dependable applications
with only minimal human interaction. These management
operations are left to the application developer. However,
the FT CORBA standard [17] specify certain mechanisms
such as a generic factory, a centralized RM and a fault mon-
itoring architecture, that can be used to implement a central-
ized management facilities. DARM as presented in this pa-
per enable distributed fault treatment. Eternal [14] is prob-
ably the most complete implementation of the FT CORBA
standard, and uses a centralized RM. It supports distributing
replicas across the system, however, the exact workings of
their replica placement approach has to our knowledge not
been published. DOORS [16] is a framework that provides
a partial FT CORBA implementation, focusing on passive
replication. It uses a centralized RM to handle replica place-
ment and migration in response to failures. The RM is not
replicated, and instead performs periodic checkpointing of
its state tables, limiting its usefulness since it cannot handle
recovery of other applications when the RM is unavailable.
Also the MEAD [20] framework implements parts of the

FT CORBA standard, and supports recovery from node and
process failures. However, recovery from a node failure re-
quires manual intervention to reboot or replace the node,
since there is no support for relocating the replicas to other
nodes. AQuA [19] is also based on CORBA and was devel-
oped independently of the FT CORBA standard. AQuA is
special in its support for recovery from value faults. AQuA
adopts a closed group model, in which the group leader
must join the dependability manager group in order to per-
form notification of membership changes (e.g. due to fail-
ures). Although failures are rare events, the cost of dynamic
joins and leaves (run of the view agreement protocol), can
impact the performance of the system if a large number of
groups are being managed by the dependability manager.
ARM [10, 8] uses a centralized RM to handle distribution
of replicas (replica placement), as well as fault treatment
of both network partition failures and crash failures. The
ARM framework uses the open group model, enabling ob-
ject groups to report failure events to the centralized man-
ager without becoming a member of the RM group.

DARM was first proposed as a concept in [9], and has
since been adapted and implemented using the Spread GCS
as presented in this paper. Additional technical details can
be found in [6]. DARM essentially supports the same fea-
tures as ARM, but instead uses a distributed approach to
perform replica placement. This enables each group to han-
dle their own allocation of replicas to the sites and nodes in
the target environment. Thereby, eliminating the need for a
centralized RM that maintains global information about all
groups in the system, which is required in all the frame-
works discussed above. Furthermore, none of the other
frameworks that support recovery, except ARM, has been
rigorously evaluated experimentally with respect to fault
treatment. Compared to Jgroup/ARM, the recovery perfor-
mance of Spread/DARM is about 2.5 seconds faster (fast
config.) The main difference lies in the view agreement de-
lay which is significant in Jgroup even for small groups.
Although neither system has been tested in scenarios with
many services and large groups, we believe that Spread
would outperform Jgroup in such configurations.

Virtualization can also be used to support a recovery
mechanism. In virtualization, multiple virtual machines
(running on physical servers) can host applications with hot
standby copies in other virtual machines (on distinct physi-
cal servers). These standbys can be configured to take over
for a production server during outages. The advantage of
virtualization is that applications are decoupled from the
replication and recovery mechanisms, and developers need
not consider these challenges. However, the drawback is
that stateful applications must write updates to a common
stable storage to ensure their availability to the standbys,
making the storage component a single point of failure.
With DARM, each node can host their own stable storage

and provide state transfer functions to ensure consistency
across replicas.

6. Conclusions and Future Work

We have presented the design, implementation and an
initial experimental evaluation of Spread/DARM. The ap-
proach taken in DARM is based on making recovery de-
cisions within each group itself, making the groups pro-
vide seamless self-healing. The experimental results indi-
cate that DARM is able to recover from a network parti-
tion in less than 6 seconds when only one replica remains
in the partition. DARM perform recovery actions based on
predefined and configurable policies enabling self-healing
and self-configuration properties, ultimately providing au-
tonomous fault treatment.

Currently, work is underway to perform even more elab-
orate experimental evaluations based on our previous ex-
perience with a post-stratification technique [7] to estimate
system dependability characteristics. This analysis will
consider both node and network failures as well as more
elaborate system configurations. We are also planning to
add support for live reconfiguration of the underlying sites
and nodes that can support replicas, as well as dealing with
group failures, where all members of a group fail before
any of its members is able to react. The DARM system is
available as open source from http://darm.ux.uis.no/.

Acknowledgements

This work was partially supported by a scholarship from
Telenor iLabs. The authors wish to thank B. Helvik and the
anonymous reviewers for useful comments on this paper.

References

[1] Very fast Spread. http://commedia.cnds.jhu.edu/pipermail/spread-
users/2004-July/002114.html.

[2] Y. Amir, C. Danilov, and J. Stanton. A Low Latency, Loss
Tolerant Architecture and Protocol for Wide Area Group
Communication. In Proc. of the Int. Conf. on Dependable
Systems and Networks, New York, June 2000.

[3] B. Ban. JavaGroups – Group Communication Patterns in
Java. Technical report, Dept. of Computer Science, Cornell
University, July 1998.

[4] F. Cristian. Reaching Agreement on Processor-Group Mem-
bership in Synchronous Distributed Systems. Distributed
Computing, 4(4):175–188, 1991.

[5] P. Felber, R. Guerraoui, and A. Schiper. The Implementation
of a CORBA Object Group Service. Theory and Practice of
Object Systems, 4(2):93–105, Jan. 1998.

[6] J. L. Gilje. Autonomous Fault Treatment in the Spread Group
Communication System. Master’s thesis, University of Sta-
vanger, June 2007.

[7] B. E. Helvik, H. Meling, and A. Montresor. An Approach
to Experimentally Obtain Service Dependability Character-
istics of the Jgroup/ARM System. In Proc. of the Fifth Eu-
ropean Dependable Computing Conference, volume 3463 of
LNCS, pages 179–198. Springer-Verlag, Apr. 2005.

[8] H. Meling. Adaptive Middleware Support and Autonomous
Fault Treatment: Architectural Design, Prototyping and Ex-
perimental Evaluation. PhD thesis, Norwegian University of
Science and Technology, Dept. of Telematics, May 2006.

[9] H. Meling. An Architecture for Self-healing Autonomous
Object Groups. In Proc. of the 4th International Confer-
ence on Autonomic and Trusted Computing, volume 4610 of
LNCS, pages 156–168. Springer-Verlag, July 2007.

[10] H. Meling, A. Montresor, B. E. Helvik, and Ö. Babaoğlu.
Jgroup/ARM: A distributed object group platform with au-
tonomous replication management. Softw., Pract. Exper.,
Available online, to appear in print.

[11] A. Montresor. System Support for Programming Object-
Oriented Dependable Applications in Partitionable Sys-
tems. PhD thesis, Dept. of Computer Science, University
of Bologna, Feb. 2000.

[12] R. Murch. Autonomic Computing. On Demand Series. IBM
Press, 2004.

[13] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Using
Interceptors to Enhance CORBA. Computer, 32(7):62–68,
1999.

[14] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Eter-
nal - a Component-Based Framework for Transparent Fault-
Tolerant CORBA. Softw., Pract. Exper., 32(8):771–788,
2002.

[15] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Strongly Consistent Replication and Recovery of Fault-
Tolerant CORBA Applications. Comput. Syst. Sci. Eng.,
17(2), 2002.

[16] B. Natarajan, A. S. Gokhale, S. Yajnik, and D. C.
Schmidt. DOORS: Towards High-performance Fault Toler-
ant CORBA. In Proc. of the 2nd Int. Sym. Distributed Ob-
jects & Applications, pages 39–48, Antwerp, Belgium, Sept.
2000.

[17] OMG. Fault Tolerant CORBA Specification. OMG Docu-
ment ptc/00-04-04, Apr. 2000.

[18] D. Powell. Distributed Fault Tolerance: Lessons from Delta-
4. IEEE Micro, pages 36–47, Feb. 1994.

[19] Y. Ren, D. E. Bakken, T. Courtney, M. Cukier, D. A.
Karr, P. Rubel, C. Sabnis, W. H. Sanders, R. E. Schantz,
and M. Seri. AQuA: an adaptive architecture that pro-
vides dependable distributed objects. IEEE Trans. Comput.,
52(1):31–50, Jan. 2003.

[20] C. F. Reverte and P. Narasimhan. Decentralized Resource
Management and Fault-Tolerance for Distributed CORBA
Applications. In Proc. of the 9th Int. Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS), 2003.

