
Towards Adaptive, Resilient and Self-Organizing
Peer-to-Peer Systems

Alberto Montresor1, Hein Meling2, and Özalp Babaoğlu1

1 Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7,
40127 Bologna, (Italy), E-mail:{montresor,babaoglu}@CS.UniBO.IT

2 Department of Telematics, Norwegian University of Science and Technology,
O.S. Bragstadsplass 2A, N-7491 Trondheim (Norway), E-mail: meling@item.ntnu.no

Abstract. Peer-to-peer (P2P) systems are characterized by decentral-
ized control, large scale and extreme dynamism of their operating en-
vironment. Developing applications that can cope with these character-
istics requires a paradigm shift, placing adaptation, resilience and self-
organization as primary concerns. In this note, we argue that complex
adaptive systems (CAS), which have been used to explain certain biologi-
cal, social and economical phenomena, can be the basis of a programming
paradigm for P2P applications. In order to pursue this idea, we are de-
veloping Anthill, a framework to support the design, implementation and
evaluation of P2P applications based on ideas such as multi-agent and
evolutionary programming borrowed from CAS.

1 Introduction

Informally, peer-to-peer systems are distributed systems where all nodes are peers
in the sense that they have equal role and responsibility. In fact, distributed
computing was intended to be synonymous with peer-to-peer computing long
before the term was invented, but this initial desire was subverted by the advent
of client-server computing popularized by the World Wide Web.

The modern use of the term peer-to-peer (P2P) and distributed comput-
ing as intended by its pioneers, however, differ in several important aspects.
First, P2P applications reach out to harness the outer edges of the Internet and
consequently involve scales that were previously unimaginable. Second, P2P by
definition, excludes any form of centralized structure, requiring control to be
completely decentralized. Finally, and most importantly, the environments in
which P2P applications are deployed exhibit extreme dynamism in structure,
content and load. The topology of the system typically changes rapidly due to
nodes voluntarily coming and going or due to involuntary events such as crashes
and partitions. The load in the system may also shift rapidly from one region to
another, for example, as certain files become “hot” in a file sharing system; or
the computing needs of a node suddenly increase in a grid computing system.



2 Contribution

In order to deal with the scale and dynamism that characterize P2P systems,
a paradigm shift is required that includes self-organization, adaptation and re-
silience as intrinsic properties rather than as afterthought. In this note, we sug-
gest that complex adaptive systems (CAS) commonly used to explain the behav-
ior of certain biological and social systems can be the basis of a programming
paradigm for P2P applications. In the CAS framework, a system consists of a
large number of relatively simple autonomous computing units, or agents. CAS
typically exhibit what is called emergent behavior: the behavior of the agents,
taken individually, may be easily understood, while the behavior of the system
as a whole defies simple explanation. In other words, the interactions among
agents, in spite of their simplicity, can give rise to richer and more complex
patterns than those generated by single agents viewed in isolation.

As an instance of CAS drawn from nature, consider an ant colony. Several
species of ants are known to group objects in their environment (e.g., dead
corpses) into piles so as to clean up their nests. Observing this behavior, one could
be mislead into thinking that the cleanup operation is being coordinated by some
“leader” ants. Resnick [7] describes an artificial ant colony exhibiting this very
same behavior in a simulated environment. Resnick’s artificial ant follows three
simple rules: (i) wander around randomly, until it encounters an object; (ii) if it
was carrying an object, it drops the object and continues to wander randomly;
(iii) if it was not carrying an object, it picks the object up and continues to
wander. Despite their simplicity, a colony of these “unintelligent” ants is able to
group objects into large clusters, independent of their initial distribution.

What renders CAS particularly attractive from a P2P perspective is the
fact that global properties like adaptation, self-organization and resilience are
achieved without explicitly embedding them into the individual agents. In the
above example, there are no rules specific to initial conditions, unforeseen sce-
narios, variations in the environment or presence of failures. Yet, given large
enough colonies, the global behavior is surprisingly adaptive and resilient.

In order to pursue these ideas, we are developing Anthill, a novel framework
for P2P application development, based on ideas such as multi-agent systems
and evolutionary programming borrowed from CAS [10, 6]. The goals of Anthill
are to provide an environment that simplifies the design and deployment of
P2P systems based on these paradigms, and to provide a “testbed” for studying
and experimenting with CAS-based P2P systems in order to understand their
properties and evaluate their performance.

In the next sections, we provide an overview of Anthill and we present the
first results obtained through it, by presenting a load-balancing algorithm called
Messor. Messor is a simple variant of the above artificial ant algorithm: ants
drop an object they may be carrying only after having wandered about randomly
“for a while” without encountering other objects. Colonies of such ants try to
disperse objects (in the case of Messor, computational tasks) uniformly over
their environment rather than clustering them. As such, they form the basis for
a completely decentralized load balancing algorithm.



3 Anthill

Anthill uses terminology derived from the ant colony metaphor. An Anthill dis-
tributed system is composed of a self-organizing overlay network of intercon-
nected nests. Each nest is a peer entity sharing its computational and storage
resources. The network is characterized by the absence of a fixed structure, as
nests come and go and discover each other on top of a communication substrate.
Nests handle requests originated by local users, by generating one or more ants
– autonomous agents that travel across the nest network trying to satisfy the
request. Ants communicate indirectly by observing and modifying their environ-
ment, through information stored in the visited nests. For example, an ant-based
implementation of a distributed lookup service could store routing information
to guide subsequent ants towards a region of the network where the searched
key is more likely to be found.

The aim of Anthill is to simplify P2P application development and deploy-
ment by freeing the programmer of all low-level details including communication,
security and ant scheduling. Developers wishing to experiment with new proto-
cols need to focus on designing appropriate ant algorithms using the Anthill API
and defining the structure of the P2P system. When writing their protocols, de-
velopers may exploit a set of library components and services provided by nests.
Examples of such services include failure detection, document downloading and
ant scheduling for distributed computing applications.

A Java prototype of the Anthill runtime environment has been developed.
The runtime environment is based on JXTA [4], an open-source P2P project
promoted by Sun Microsystems. JXTA is aimed at establishing a network pro-
gramming platform for P2P systems by identifying a small set of basic facilities
necessary to support P2P applications and providing them as building blocks
for higher-level services. The benefits of basing our implementation on JXTA
are several. For example, JXTA allows the use of different transport layers for
communication, including TCP/IP and HTTP, and deals with issues related to
firewalls and NAT.

In addition to the runtime environment, Anthill includes a simulation envi-
ronment to help developers analyze and evaluate the behavior of P2P systems.
All simulation parameters, such as the structure of the network, the ant algo-
rithms to be deployed, characteristics of the workload presented to the system,
and properties to be measured, are specified using XML. Unlike other toolk-
its for multi-agent simulation [5], Anthill uses a single ant implementation in
both the simulation and actual run-time environments, thus avoiding the cost of
re-implementing ant algorithms before deploying them. This important feature
has been achieved by a careful design of the Anthill API and by providing two
distinct implementations of it for simulation and deployment.

In Anthill, we further exploit the “nature” metaphor through the use of
evolutionary techniques for improving various characteristics of a P2P system.
In particular, we make use of genetic algorithms [6] in tuning the ant algorithms
used by the P2P system, by specifying optimization criteria and constraints for
the parameters of the operating environment and ant algorithms.



4 Messor

The aim of Messor is to support highly parallel computations, such as the one
performed by the Seti@Home [9] project, in which the workload may be subdi-
vided in a large number of independent tasks. Unlike Seti@Home [9], however,
Messor is not based on the master-slave paradigm, in which a well-known cen-
tralized master is responsible for supplying slave machines with computational
tasks. In Messor, every node of the network is enabled to produce new tasks
and introduce them in the network for computation. A swarm of Messor ants is
responsible for exploring the network and balancing the workload by dispersing
the tasks among all reachable nodes. Once computed, task results are sent back
to the originator node, that may use appropriate mechanisms based on lease
techniques to keep track of task assignments, in order to re-insert tasks that
have been lost because they were assigned to crashed or partitioned nodes.

The Messor algorithm is a variation of the artificial ant algorithm illustrated
in Section 2. Each ant can assume three different states: SearchMax, SearchMin
and Transfer. While in the SearchMax state, the ant wanders across the network,
looking for overloaded nodes. When a sufficient number of nodes has been vis-
ited, the ant switch to SearchMin state, during which the ant wanders across
the network looking for underloaded nodes. Again, after a sufficient number of
steps, the ant switch to the Transfer state, during which it transfers tasks from
the most overloaded node to the most underloaded one, selected among those
visited during the SearchMax and SearchMin phases. When the transfer state is
completed, the ants switch to SearchMax and the process repeats itself.

The SearchMax and SearchMin walks are not performed completely at ran-
dom. When wandering, ants collect information about the load of the last visited
nodes. This information is stored in the nodes themselves and is used by ants
to drive the SearchMax and SearchMin phases: at each step, the ant randomly
selects the next node to visit among those that are believed to be more over-
loaded (in SearchMax) or underloaded (in SearchMin). In this way, ants move
faster towards those regions of the network in which they are more interested.

Figure 1 shows some preliminary results obtained by Messor. More details
about the algorithm and its performance can be found in a companion paper [2].
These results were obtained in a network of 100 idle nodes, by generating 100,000
tasks from a single node. At each iteration, all ants perform a single step by
executing their algorithm and moving to the next node. As shown in the figure,
after only 40 iterations, the workload is evenly balanced among all nodes.

1

10

100

1000

10000

100000

1 100Nests

Lo
ad

1

10

100

1000

10000

100000

1 100Nests

Lo
ad

1

10

100

1000

10000

100000

1 100Nests

Lo
ad

(i) (ii) (iii)

Fig. 1. Load distribution after (i) 0, (ii) 20, (iii) 40 iterations in the simulation.



5 Conclusions and Future Work

We have argued that ideas and techniques borrowed from CAS could form the
basis for a new paradigm for building P2P systems that are adaptive, resilient
and self-organizing. The approach we are advocating is quite different from those
adopted in recent P2P routing algorithms [8, 11, 3] where complex protocols are
required to reconfigure the routing tables in the event of nodes joining or leav-
ing (voluntarily or due to crashes) the system. The adaptiveness and resilience
of Anthill applications may be traced back to several sources. First, complex
systems are composed of large number of entities, each of them interchangeable
for another. Moreover, interconnections between entities are flexible, allowing
transfer of tasks between entities, and communication throughout the system.
Finally, the differences between entities enables a diversity of responses in a
changing environment.

Algorithms developed in Anthill are often based on a probabilistic approach,
and thus it is difficult to provide guarantees on their behavior. Nevertheless, our
preliminary results are indeed interesting; using Anthill, we have implemented
the load-balancing application briefly introduced in this paper, and we have
realized a file sharing application called Gnutant, that again is inspired to the
behavior of ants [1]. Gnutant ants builds a distributed index consisting of URLs
to documents, by traversing the network looking for documents and leaving
information trails to be followed in future searches.

References

1. O. Babaoğlu, H. Meling, and A. Montresor. Anthill: A Framework for the Devel-
opment of Agent-Based Peer-to-Peer Systems. In Proc. of the 22th Int. Conf. on
Distributed Computing Systems, Wien, Austria, July 2002.

2. O. Babaoğlu, H. Meling, and A. Montresor. Implementing a Load-Balancing Al-
gorithm in Anthill. Technical Report UBLCS-02-9, Dept. of Computer Science,
University of Bologna, Apr. 2002.

3. S. R. et al. A Scalable Content-Addressable Network. In Proc. of the ACM SIG-
COMM’01, San Diego, CA, 2001.

4. Project JXTA. http:// www. jxta. org.
5. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simulation

System, A Toolkit for Building Multi-Agent Simulations. Technical report, Swarm
Development Group, June 1996. http://www. swarm. org.

6. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Apr. 1998.
7. M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel

Microworlds. MIT Press, 1994.
8. A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and

Routing for Large-Scale Peer-to-Peer Systems. In Proc. of the 18th International
Conference on Distributed Systems Platforms, Heidelberg, Germany, Nov. 2001.

9. SETI@Home Home Page. http:// setiathome. ssl. berkeley. edu.
10. G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intel-

ligence. MIT Press, 1999.
11. B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for

Fault-Tolerant Wide-Area Location and Routing. Technical Report UCB/CSD-
01-1141, U.C. Berkeley, Apr. 2001.


