
Messor: Load-Balancing through
a Swarm of Autonomous Agents

Alberto Montresor1, Hein Meling2, and Özalp Babaoğlu1

1 Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7,
40127 Bologna (Italy), E-mail:{babaoglu,montresor}@CS.UniBO.IT

2 Department of Telematics, Norwegian University of Science and Technology,
O.S. Bragstadsplass 2A, N-7491 Trondheim (Norway), E-mail: meling@item.ntnu.no

Abstract. Peer-to-peer (P2P) systems are characterized by decentral-
ized control, large-scale and extreme dynamism of their environment.
Developing applications that can cope with these characteristics requires
a paradigm shift that puts adaptation, resilience and self-organization as
primary concerns. Complex adaptive systems (CAS), commonly used to
explain the behavior of many biological and social systems, could be
an appropriate response to these requirements. In order to pursue these
ideas, this paper presents Messor, a decentralized load-balancing algo-
rithm based on ideas such as multi-agent systems drawn from CAS. A
novel P2P grid computing application has been designed using the Mes-
sor algorithm, allowing arbitrary users to initiate computational tasks.

1 Introduction

Informally, peer-to-peer (P2P) systems are distributed systems based on the con-
cept of resource sharing by direct exchange between peer nodes (i.e., nodes having
same role and responsibility). Exchanged resources include content, as in popu-
lar P2P file sharing applications [21, 10, 12], and storage capacity or CPU cycles,
as in computational and storage grid systems [1, 19, 11]. Distributed computing
was intended to be synonymous with P2P computing long before the term was
invented, but this initial desire was subverted by the advent of client-server com-
puting. The modern use of the term P2P and distributed computing as intended
by its pioneers, however, differ in several important aspects. First, P2P appli-
cations reach out to harness the outer edges of the Internet and consequently
involve scales that were previously unimaginable. Second, P2P by definition,
excludes any form of centralized structure, requiring control to be completely
decentralized. Finally, and most importantly, the environments in which P2P
applications are deployed exhibit extreme dynamism in structure and load.

In order to deal with the scale and dynamism that characterize P2P systems,
a paradigm shift is required that includes self-organization, adaptation and re-
silience as fundamental properties. We believe that complex adaptive systems
(CAS), commonly used to explain the behavior of certain biological and social
systems, can be the basis of a new programming paradigm for P2P applications.
In the CAS framework, a system consists of a large number of relatively simple



autonomous computing units, or agents. CAS typically exhibit what is called
emergent behavior: agents, taken individually, may be easily understood, while
the behavior of the system as a whole defies simple explanation. In other words,
the interactions among agents, in spite of their simplicity, can give rise to richer
and more complex patterns than those generated by single agents in isolation.

As an instance of CAS drawn from nature, consider an ant colony. Several
species of ants, in particular those belonging to the Messor Sancta species, are
known to group objects in their environment (e.g., dead corpses) into piles so
as to clean up their nests. Observing this behavior, one could be mislead into
thinking that the cleanup operation is being coordinated by some “leader” ants.
Resnick [18] describes an artificial ant colony exhibiting this very same behavior
in a simulated environment. Resnick’s artificial ant follows three simple rules:
(i) wander around randomly, until it encounters an object; (ii) if it was carrying
an object, it drops the object and continues to wander randomly; (iii) if it was
not carrying an object, it picks the object up and continues to wander. Despite
their simplicity, a colony of these “unintelligent” ants is able to group objects
into large clusters, independent of their initial distribution.

What renders CAS particularly attractive from a P2P perspective is the
fact that global properties like adaptation, self-organization and resilience are
achieved without explicitly embedding them into the individual agents. In the
above example, there are no rules specific to initial conditions, unforeseen sce-
narios, variations in the environment or presence of failures. Yet, given large
enough colonies, the global behavior is surprisingly adaptive and resilient.

In order to pursue these ideas, we have developed Anthill [3], a novel frame-
work for P2P application development based on ideas such as multi-agent sys-
tems and evolutionary programming borrowed from CAS [22, 15]. The goals of
Anthill are to provide an environment that simplifies the design and deployment
of P2P systems based on these paradigms, and to provide a “testbed” for study-
ing and experimenting with CAS-based P2P systems in order to understand
their properties and evaluate their performance. An Anthill system is composed
of a collection of interconnected nests. Each nest is a peer entity that makes its
storage and computational resources available to swarms of ants – autonomous
agents that travel across the network trying to satisfy user requests. During
their life, ants interact with services provided by visited nests, such as storage
management and ant scheduling.

Details of the design and implementation of Anthill can be found in a com-
panion paper [3]. After having developed a prototype of Anthill, we are now
in the process of testing the viability of our ideas regarding P2P as CAS by
developing common P2P applications like file sharing [16] and grid computing
over Anthill. In this paper, we present one of such application, called Messor.
Messor is a grid computing system aimed at supporting the concurrent execution
of highly-parallel, time-intensive computations, in which the workload may be
decomposed into a large number of independent jobs. The computational power
offered by a network of Anthill nests is exploited by Messor by assigning a set of
jobs comprising a computation to a dispersed set of nests. To determine how to



balance the load among the computing nodes, Messor use an algorithm inspired
by the behavior of the artificial ant described above: Messor ants drop objects
they are carrying only after having wandered about randomly “for a while”
without encountering object concentrations. Colonies of such Messor ants try
to disperse objects (more specifically, jobs) uniformly over their environment,
rather than clustering them into piles.

Several computations can be profitably supported by Messor [1, 5, 2]. For
example, in the Seti@Home project [1], the enormous amount of radio signals
registered by radio telescopes are subdivided into a large number of data sets,
that can be independently analyzed in the search for evidence of extra-terrestrial
intelligence; Distributed.net [5] is an umbrella for several distributed comput-
ing projects, including cryptography challenges in which brute-force attacks are
performed by subdividing key spaces into independent portions; the Anthrax
Project [2] is an effort designed to help scientists to find a treatment for the
Anthrax toxin, by performing screening analysis of large sets of molecules.

All these projects are based on a master-slave architecture, in which only
the master node is enabled to generate and assign new jobs. Slave machines are
relegated to a role of mere executors, thus in some sense betraying the peer-to-
peer philosophy. Messor is completely decentralized, allowing every node in the
system to generate new jobs and submit them to the network. An application
designed in this way may be interesting for groups of entities that want to share
their resources in order to exploit the resulting computing power cost effectively.

2 Anthill

An Anthill system is composed of a self-organizing overlay network of intercon-
nected nests, as illustrated in Figure 1. Each nest is a middleware layer capable
of hosting resources and performing computations. The network is characterized
by the absence of any fixed structure, as nests come and go and discover each
other on top of a communication substrate. Nests interact with local instances
of one or more applications and provide them with a set of services. Applications
are the interface between the user and the P2P network, while services have a
distributed nature and are based on the collaboration among nests. An example
application may be a file-sharing system, while a service could be a distributed
indexing service used by the file-sharing application to locate files.

An application performs requests and listens for replies through its local nest.
Requests and replies constitute the interface between applications and services.
When a nest receives a request from the local application, an appropriate service
for handling the request is selected from the set of available services. This set is
dynamic, as new services may be installed by the user. Services are implemented
by means of ants, autonomous agents able to travel across the nest network. In
response to a request, one or more ants are generated and assigned to a particular
task. Ants may explore the network and interact with the nests that they visit
in order to accomplish their goal. Anthill does not specify which services a nest
should provide, nor impose any particular format on requests. The provision of
services and the interpretation of requests are delegated to ants.



Resources

Resources

Resources

Resources

Resources

Resources

N4

N1

N3

N5

N2

N6

Figure 1: Overview of a nest network.

Grid
Service

Communication
Layer

Scheduler
AntSharing

Service

File

Job Manager

Load Storage

Network

URL Manager

File Manager

Routing Table

Nest

Figure 2: The architecture of a nest.

2.1 Nests

Figure 2 illustrates the architecture of a nest that is composed of three logical
modules: ant scheduler, communication layer and resource managers. The ant
scheduler module multiplexes the nest computation resource among visiting ants.
It is also responsible for enforcing nest security by providing a “sandbox” for
ants in order to limit the resources available to ants and prohibit ants from
performing potentially dangerous actions (e.g., local file access).

The communication layer is responsible for network topology (neighbor) man-
agement and for ant movement between nests. The set of remote nests known
to a node are called neighbors of that node. Note that the concept of neighbor-
hood does not involve any distance metrics, since such metrics are application
dependent and is more appropriately chosen by developers. The collection of
neighbor sets defines the nest network that might be highly dynamic. For ex-
ample, the communication layer may discover a new neighbor, or it may forget
about a known neighbor if it is considered unreachable. Both the discovery and
the removal processes may be either mediated by ants, or performed directly by
the communication layer.

Nests offer their resources to visiting ants through one or more resource
managers. Example resources could be files in a file-sharing system or CPU
cycles in a computational grid, while the respective resource managers could be
a disk-based storage manager or a job scheduler. Resource managers typically
enforce a set of policies for managing the (inherently limited) resource. Each
service installed by a nest is associated with a set of resource managers. For
example, the nest in Figure 2 provides two distinct services: a file-sharing service
based on a distributed index for file retrieval, in which a routing table is used by
ants in making routing decisions, a file manager is used for maintaining shared
files and a URL manager contains the distributed index; and a computational
grid service, in which a job manager executes jobs assigned to it.

2.2 Ants

Ants are generated by nests in response to user requests; each ant tries to satisfy
the request for which it has been generated. An ant will move from nest to nest



until it fulfills its task, after which (if the task requires this) it may return back
to the originating nest. Ants that cannot satisfy their task within a time-to-live
(TTL) parameter are terminated. When moving, the ant carries its state, that
may contain the request, results or other ant specific data. The ant algorithm is
contained in a run() method, that is invoked at each visited nest. The ant code
may be transmitted together with the ant state, if needed; appropriate code
caching mechanisms are used to avoid to download the same algorithm more
than once, and to update it when new versions are available.

Ants do not communicate directly with each other; instead, they commu-
nicate indirectly by leaving information related to the service they are imple-
menting in the appropriate resource manager found in the visited nests. For
example, an ant implementing a distributed lookup service may leave routing
information that helps subsequent ants to direct themselves toward the region
of the network that more likely contains the searched key. This form of indirect
communication, used also by real ants, is known as stigmergy [8]. The behavior
of an ant is determined by its current state, its interaction with resource man-
agers and its algorithm, that may be non-deterministic. For example, an ant may
probabilistically decide not to follow what is believed to be the best route for
accomplishing a task, and choose to explore alternative regions of the network.

2.3 The Anthill Framework

A Java prototype of the Anthill runtime environment [?] has been developed,
and is based on JXTA [9], an open-source P2P project promoted by Sun Mi-
crosystems. JXTA is aimed at establishing a programming platform for P2P
systems by identifying a small set of basic facilities necessary to support P2P
applications and providing them as building blocks for higher-level services. The
benefits of basing our implementation on JXTA are several. For example, JXTA
allows the use of different transport layers for communication and deals with
issues related to firewalls and NAT.

In addition to the runtime environment, Anthill includes a simulation en-
vironment to help developers analyze and evaluate the behavior of their P2P
systems. Simulating different P2P applications require developing appropriate
ant algorithms and a corresponding request generator characterizing user inter-
actions with the application. Each simulation study is specified using XML by
defining a collection of component classes and a set of parameters for component
initialization. For example, component classes to be specified include the simu-
lated nest network, the request generator to be used, and the ant algorithm to be
simulated. Initialization parameters include the duration of the simulation, the
network size, the failure probability, etc. This flexible configuration mechanism
enable developers to build simulations by assembling pre-defined and customized
component classes, thus simplifying the process of evaluating ant algorithms.

Unlike other toolkits for multi-agent simulation [14], Anthill uses a single ant
implementation in both the simulation and actual run-time environments, thus
avoiding the cost of re-implementing ant algorithms before deploying them. This
important feature has been achieved by a careful design of the Anthill API and
by providing two distinct implementations of it for simulation and deployment.



3 Load Balancing in Messor

In this section, we present the Messor application and the services on which it
relies. Messor is aimed at supporting the concurrent execution of highly-parallel,
time-intensive computations, in which the workload can be decomposed into a
large number of independent jobs.

3.1 System Model and Messor Specification

A Messor system is composed of a collection of interconnected Anthill nests
configured to run the Messor software. Every such nest can submit jobs to the
nest network, where each job is composed of some input data and the algorithm
to be computed over these data. Jobs are scheduled and executed by the nest
on which the job resides, by invoking the job algorithm. We say that a job
is completed when its associated algorithm has been executed to completion. A
completed job outputs a result, i.e. some data obtained from the job computation.

At each nest, Messor offers a very simple API to its users, enabling them to
submit new jobs to be computed and collecting results once the jobs have been
computed. The originator nest of a job is the nest where the job has been submit-
ted. Once submitted, jobs may remain in the originator, or may be transferred
to other nests in order to exploit their unused computational power. When a job
is completed, the result is sent back to the originator. Once there, the user is
either notified of the job result, or the result is stored locally; in the latter case,
the user may periodically poll the nest to obtain the collected results. Messor
guarantees that all jobs submitted to a correct originator will eventually be com-
pleted and their results delivered to the originator itself. Although this property
may be satisfied by simply letting the correct originator compute all jobs, Messor
attempts to disperse the load uniformly among cooperating nodes.

3.2 Messor Architecture

The architecture of a node supporting the Messor application is shown in Fig-
ure 3. Messor nodes are composed of two main layers:

– the Messor Application Layer is responsible for interacting with the local user
by accepting requests and collecting computed results on her behalf; further-
more, it is also responsible for keeping track of job assignments, in order to
re-insert in the system, jobs assigned to nodes that may have crashed.

– the Messor Service Layer is responsible for job execution and load balancing.

The Application Layer receives jobs from the user, and delivers them as job
requests to the Request Router contained in the nest. This module analyze the
request and routes it to the appropriate service among those installed in the nest.
In the case of Messor, job requests are delivered to the Messor Service Layer.

In order to achieve its goals, the Application Layer maintains a database of jobs
originated by the local user and their status with respect to the computation.
The status may corresponds to the computed results, if available, or to the
identifier of the nest to which the job has been assigned. Results computed by



Upload
Job

Download
JobResult

Upload

Network

Communication Layer

Ant Scheduler

Request Router

Messor Service Layer

Job Manager

Load Storage

Download
Start

Nest

Messor Application Layer

Job Queue

Result
Repository

Job Request

Result
Upload

Download

Fig. 3. The architecture of a node supporting Messor

remote nests are downloaded by the Application Layer out-of-band, i.e. outside
the ant communication mechanism offered by nests, for efficiency reasons. A
lease mechanism is used to keep track of operational nodes, in order to identify
crashed nodes and opportunely re-insert jobs assigned to them.

The Service Layer exploits the ant communication and scheduling facilities
provided by nests. Two main resource managers are employed: the Load Storage
contains information about the estimated load of remote nests, while the Job
Manager is responsible for executing the jobs assigned to the local nest. The
Load Storage implementation is memory-based; it is the main data structure
maintained by visiting ants, and its utilization is explained in the next section.
The Job Manager maintains a database of jobs to be computed by the local
nest, implemented as a queue, and acts as a scheduler that selects the next job
from the queue and executes it. Once computed, the Job Manager is responsible
for uploading the result to the Application Layer of the job originator. Jobs are
inserted in the job queue either after the Messor Service Layer have received a
local request through the Request Router, or by downloading them from other
nests. The download process is triggered by Messor ants, that are responsible
for load balancing, while the actual download is performed out-of-band, without
the mediation of ants.

3.3 The Messor Ant Algorithm

The most interesting component of Messor is its ant algorithm. In order to un-
derstand the basic idea behind Messor, consider the following variation of the
artificial ant algorithm described in the introduction: (i) when an ant is not car-
rying any object, it wanders about randomly until it encounters an object and
picks it up; (ii) when an ant is carrying an object, the ant drops it only after hav-
ing wandered about randomly “for a while” without encountering other objects.
Colonies of such ants try to disperse objects uniformly over their environment
rather than clustering them into piles.

The algorithm of Messor ants is inspired by the rules described above. The
environment in which Messor ants live is given by the network of nests. The



objects to pick-up and drop-off correspond to the actual jobs, existing within
the nest network. During its life-time, a Messor ant may assume two different
states: SearchMax and SearchMin. While in SearchMax state, the ant wanders
about in the network until it finds an “overloaded” nest; at that point, the
ant records the identifier of this nest and switch to the SearchMin state. While
in SearchMin state, the ant wander about looking for an “underloaded” nest.
When such a nest is found, the ant requests the local Job Manager to transfer
jobs from the overloaded nest to the underloaded one, and then switches back
to the SearchMax state again; and the process repeats. The transfer process is
performed by direct downloading between the two nests; this to avoid carrying
potentially large amounts of data representing jobs from one node to another
while wandering about, searching for underloaded nodes.

The load of a nest is defined as the number of jobs currently in the job queue
of that nest; alternatively, if information about the potential computing power
needed to perform jobs is available, the load of a nest may be defined based on
this information. The concepts of overloaded and underloaded nests are relative
to the average load of the nests recently visited by an ant. This definition enable
ants to make decisions about job transfers between nests with unbalanced loads
on the basis of local information only, i.e. without global knowledge.

The SearchMax and SearchMin walks are not performed completely at ran-
dom. When wandering, ants collect information about the load of the last visited
nests. This information is then stored in the Load Storage component in each
nest, and is used by subsequent ants to drive their SearchMax and SearchMin
phases: at each step, the ant randomly selects the next node to visit among
those that are believed to be more overloaded (in SearchMax) or underloaded (in
SearchMin). In this way, ants move faster towards those regions of the network
in which they are more interested. To avoid that the system become biased to-
ward a subset of nests (those believed to be more over- or underloaded), ants
may occasionally, based on an exploration probability, select the next nest using
a uniform distribution, enabling the exploration of the entire network.

The Messor algorithm is shown in Figure 4. The state of each ant is repre-
sented by the set of variables listed in the preamble. The current state (SearchMax
vs SearchMin) of the ant is stored in variable state. A circular queue, visits con-
tains nest identifiers and load information of the last N visited nests; this infor-
mation is used to update the load information stored in Load Storages. Variables
maxLoad and maxNest (minLoad, minNest) contain the load and the identifier of
the nest with maximum (minimum) load among those recently visited.

Whenever an ant reaches a nest, its run() method is executed. The AntView
parameter passed to run() is a proxy object used by ants to communicate with
the nest. The first action of run() is to obtain references to the local Job Manager
and Load Storage; then, variables maxLoad, minLoad, maxNest and minNest are
initialized by the initMaxMin() method (not shown in the figure), simply by sub-
stituting, the load value and the identifier of the nest with maximum or minimum
load. Finally, method run invokes methods doSearchMax () or doSearchMin(),
depending on its current state.



integer state = MAX;

Queue visits = new Queue(N);

integer maxLoad, minLoad;

NestId maxNest, minNest;

method doSearchMax() {
if ((minLoad/maxLoad) ≤ TargetRatio[MAX]

and not tossCoin(KeepSearchProb[MAX])) {
state = MIN;

doSearchMin();

} else

goNextNest();

}

method doSearchMin() {
if ((minLoad/maxLoad) ≤ TargetRatio[MIN]

and not tossCoin(KeepSearchProb[MIN])) {
state = MAX;

mng.forceTransfer(maxNest);

clearMaxMin();

doSearchMax();

} else

goNextNest();

}

method run(AntView view) {
JobManager mng =

view.getManager(JOBMANAGER);

LoadStorage strg =

view.getManager(LOADSTORAGE);

initMaxMin(mng.getLoad(), view.getId());

if (state == MAX)

doSearchMax();

elseif (state == MIN)

doSearchMin();

}

method goNextNest() {
if (tossCoin(ExplorationProb[state])) {

list = strg.getNeighborList(view);

nextNest= uniformRandom(list);

} else {
list = strg.getOrderedList(state, view);

nextNest= normalRandom(list, Dev[state]);

}
strg.addLoads(visits);

visits.add(mng.getLoad(), view.getId());

view.move(nextNest);

}

Fig. 4. Pseudo-code description of the algorithm

The first step of method doSearchMax () is to decide whether to keep travel-
ing through the network, searching for nodes with higher loads, or to switch to
the SearchMin state. An ant will explore the network until the ratio between the
maximum and the minimum load values stored in the ant state reaches a tar-
get value (represented by TargetRatio). Furthermore, each ant has a probability
KeepSearchProb to keep searching even when the target ratio has been reached,
providing a way for ants to continue their search for overloaded nests.

If the ant decides to keep searching, method goNextNest() is invoked. This
method selects the next nest and moves there by invoking method move() on
the AntView. The selection of the next nest depends on whether the ant decides
to explore the network completely at random, or to direct itself towards a region
of the network that is expected to be more overloaded. This decision is made by
tossing a coin with probability ExplorationProb. If the decision is not to explore,
the next nest is selected according to a normal distribution among the nests
contained in the local Load Storage that are believed to be more overloaded.
Before moving to the next nest, the ant updates the local Load Storage with its
current content of visits, and then updates the visits variable with the load value
and the identifier of its current nest.

Method doSearchMin is similar to doSearchMax ; the only difference is when
the ant decides to switch again to the SearchMax state, in which case the bal-
ancing operation (mediated by the involved Job Manager) is started and the
variables are re-initialized.



1

10

100

1000

10000

1 100
1

10

100

1000

10000

1 100

1

10

100

1000

10000

1 100

1

10

100

1000

10000

1 100

1

10

100

1000

10000

1 100
1

10

100

1000

10000

1 100

(a) (b) (c)

(d) (e) (f)

Fig. 5. Load distribution after 0, 5, 10, 15, 20, 50 iterations.

4 Performance Evaluation

In this section, we present preliminary results for Messor, obtained through
the Anthill simulator. Further details can be found in a companion paper [17].
Figure 5 illustrate how the load balancing process performed by Messor evolves
over time. The results were obtained in a network of 100 idle nests, initially
connected to form a ring (for visualization reasons). Initially, 10,000 jobs are
generated in a single node. The different histograms depict the load observed in
all the nests (x-axis) after 0, 5, 10, 15, 20, and 50 iterations of the algorithm. At
each iteration, a set of 20 ants perform a single step, i.e. executes its run method
and moves to the next nest. In each iteration, a node is limited to at most
200 job transfers to other nodes. As the figure illustrate, only 15-20 iterations
are required to transfer jobs to all other nodes in the network, and after 50
iterations, the load is perfectly balanced. The first iterations are spent exploring
the neighborhood in the ring network. After a few iterations, new connections
are created and used to transfer jobs to remote parts of the network.

5 Discussion and Conclusions

We have argued that techniques borrowed from CAS could form the basis for
a new paradigm for building P2P systems that are adaptive, resilient and self-
organizing. To prove the viability of this idea, we have used Anthill to developed
a P2P load-balancing algorithm that exhibit the above properties. Messor ants
adapt their behavior to the load conditions, wandering about randomly when the



load is uniformly balanced and moving rapidly towards regions of the network
with highly unbalanced loads when these exist. The system is resilient to failures,
as jobs assigned to crashed nodes are simply re-inserted in the network by the
nest that generated them. And finally, Messor is self-organizing, as new nests
may join the network, and their computing power is rapidly exploited to carry
on the computation, as soon as ants discover the nest and start to assign it jobs
transferred from other nests.

Our work may be compared with existing architectures for distributed com-
puting. The architecture of Seti@Home [1], and other distributed computation
projects [2, 5], is based on the master-slave paradigm, in which a well-known
centralized master is responsible for supplying slave machines with jobs. Mes-
sor differs from Seti@Home, because every node of the network is capable of
producing new jobs and introduce them in the network for computation. Fur-
thermore, while Seti@Home is specialized in solving a particular problem, Messor
aims at providing a general support for distributed computing. In this sense, it
may be compared with so-called grid computing projects [7], such as Globus [6]
and Legion [4]. The goals of Messor are more simplistic than those of these
projects, that present complex architectures, capable to organize computations
based on the memory, storage and computing requirements of jobs, as well as on
the relationships between jobs. Nevertheless, Messor is interesting because, un-
like these projects, presents a completely decentralized architecture. The agent
cloning approach [20], also facilitate load-balancing through the use of match-
making agents to advertise capabilities of e.g., underloaded agents. This allows
overloaded agents to find underloaded once to which they may clone (migrate)
themselves. Using matchmaking agents is inappropriate for P2P and grid com-
puting systems, since it impose a certain degree of centralization.

Many systems already exist for achieving dynamic load distribution, in par-
ticular process migration systems [13] like MOSIX, Sprite, Mach and LSF. How-
ever, none of these apply a CAS based approach to this problem, and many of
them employ a centralized load-balancing algorithm, making them unsuitable
for deployment in grid computing applications. The MOSIX system use a decen-
tralized load balancing algorithm, however it is a kernel level process migration
system, and thus unsuitable in heterogenous environments.

We conclude by highlighting the fact that Messor is still a prototype. Many
important features needed by distributed computing systems have not been im-
plemented yet. For example, we have not considered issues related to security,
apart from enclosing visiting ants in “sandboxes” that limit the set of actions
performed by them. Mechanisms to authenticate users and to keep account over
the number of jobs submitted and computed by nests are needed; these mecha-
nisms may also prove useful as a defense against denial-of-service attacks. Further
studies are needed to improve our understanding of the behavior of Messor ants.
In particular, we are interested in obtaining an evaluation of the number of ants
needed to manage a network. We plan to implement a mechanism to bound the
number of ants present in the system simultaneously, by adding a module at
each nest that kills ants when they are in excess, and creates new ants when



the nest has not been visited recently. This module will also have an adaptive
behavior, increasing the number of ants when the load is highly unbalanced.

References

1. D. Anderson. SETI@home. In A. Oram, editor, Peer-to-Peer: Harnessing the
Benefits of a Disruptive Technology, chapter 5. O’Reilly, Mar. 2001.

2. The Anthrax Project. http:// www. chem. ox. uk/ anthrax.

3. Ö. Babaoğlu, H. Meling, and A. Montresor. Anthill: A Framework for the Devel-
opment of Agent-Based Peer-to-Peer Systems. In Proc. of the 22th Int. Conf. on
Distributed Computing Systems, Vienna, Austria, July 2002.

4. S. Chapin, J. Karpovich, and A. Grimshaw. The Legion Resource Management
System. In Proc. of the 5th Workshop on Job Scheduling Strategies for Parallel
Processing, Apr. 1999.

5. Distributed.net Home Page. http:// www. distributed. net.

6. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 11(2):115–128, 1997.

7. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing
Infrastructure,. Morgan Kaufmann, 1999.

8. P. Grasse. La reconstruction du nid et les coordinations interindividuelles chez
bellicositermes natalensis et cubitermes sp. Insectes Sociaux, 6:41–81, 1959.

9. Project JXTA. http:// www. jxta. org.

10. G. Kan. Gnutella. In A. Oram, editor, Peer-to-Peer: Harnessing the Benefits of a
Disruptive Technology, chapter 8. O’Reilly, Mar. 2001.

11. J. Kubiatowicz et al. OceanStore: An Architecture for Global-Scale Persistent
Storage. In Proc. of the 9th International Conference on Architectural support for
Programming Languages and Operating Systems, Cambridge, MA, Nov. 2000.

12. A. Langley. Freenet. In A. Oram, editor, Peer-to-Peer: Harnessing the Benefits of
a Disruptive Technology, chapter 8. O’Reilly, Mar. 2001.

13. D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process
Migration. ACM Computing Surveys, 32(3):241–299, Sept. 2000.

14. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simulation
System, A Toolkit for Building Multi-Agent Simulations. Technical report, Swarm
Development Group, June 1996. http:// www. swarm. org.

15. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Apr. 1998.

16. A. Montresor, Ö. Babaoğlu, and H. Meling. Gnutant: Free-Text Searching in Peer-
to-Peer Systems. Technical Report UBLCS-02-07, Dept. of Computer Science,
University of Bologna, May 2002.

17. A. Montresor, H. Meling, and Ö. Babaoğlu. Messor: Load-Balancing through a
Swarm of Autonomous Agents. Technical Report UBLCS-02-08, Dept. of Com-
puter Science, University of Bologna, May 2002.

18. M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel
Microworlds. MIT Press, 1994.

19. A. Rowstron and P. Druschel. Storage Management and Caching in PAST, a
Large-Scale, Persistent Peer-to-Peer Storage Utility. In Proc. of the 18th ACM
Symp. on Operating Systems Principles, Canada, Nov. 2001.

20. O. Shehory, K. Sycara, P. Chalasani, and S. Jha. Agent Cloning: An Approach
to Agent Mobility and Resource Allocation. IEEE Communications Magazine,
36(7):58–67, July 1998.



21. C. Shirky. Listening to Napster. In A. Oram, editor, Peer-to-Peer: Harnessing the
Benefits of a Disruptive Technology, chapter 2. O’Reilly, Mar. 2001.

22. G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT Press, 1999.


