
COMPUTING THE EULER CHARACTERISTIC OF

GENERALIZED KUMMER VARIETIES

MARTIN G. GULBRANDSEN

Abstract. We give an elementary proof of the formula χ(KnA) =
n3σ(n) for the Euler characteristic of the generalized Kummer va-
riety KnA, where σ(n) denotes the sum of divisors function.

1. Introduction

Let A be an abelian surface and let n ≥ 2 be a natural number.
Beauville [1] introduced the generalized Kummer variety KnA (see Def-
inition 2.2), as an example of a compact irreducible symplectic variety.
In this note we will give an almost elementary proof of the following:

Theorem 1.1 (Göttsche [6]). The topological Euler characteristic of

the generalized Kummer variety is given by

χ(KnA) = n3σ(n)

where σ(n) denotes the sum of divisors function σ(n) =
∑

d|n d.

This formula was first found by Göttsche [6, Corollary 2.4.13], as a
corollary of his computation of the Betti numbers of KnA. If we aim
only at the Euler characteristic, however, a much simpler argument is
possible. Indeed, Debarre [3] gave an alternative proof of the theorem,
using a Lagrangian fibration of a certain (subvariety of a) relative Ja-
cobian of curves on A, together with various geometric constructions
relating the relative Jacobian to KnA. Our proof utilizes a Lagrangian
fibration of KnA itself, in the case where A is a product of elliptic
curves.

The structure of our argument can be outlined as follows: It is
enough to consider the case where A = E × E ′ is a product of el-
liptic curves (Proposition 3.1). In this case, KnA admits a Lagrangian
fibration (Section 4), and only the most degenerate fibres contribute to
the Euler characteristic (Lemma 4.2). Using the formula of Ellingsrud
and Strømme (Theorem 2.1) for the Euler characteristic of the punc-
tual Hilbert scheme, the computation of χ(KnA) can be reduced to the
computation of the Euler characteristic of certain varieties parametriz-
ing effective divisors on E (Lemma 4.3). This computation is carried
out in Section 5, with the help of a well known combinatorial formula,
recalled in Section 2.3.
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1.1. Notation. We work with schemes over C throughout. By a map
we mean a morphism in the category of schemes. By a variety we mean
a reduced, not necessarily irreducible, separated scheme of finite type.
Whenever a ∈ A is a point on an abelian variety, we write Ta : A→ A
for the translation map, and we denote by 0 ∈ A the identity element
for the group law.

2. Preliminaries

2.1. Topology. We are concerned with the Euler characteristic χ de-
fined using cohomology with compact support. It has two friendly
properties.

Firstly, χ is additive: If X is a variety, and U ⊂ X is open, we have

χ(X) = χ(X \ U) + χ(U).

By a point-set-topological argument it follows that

χ(X) =
∑

i

χ(Ui)

whenever X =
⋃

i Ui is a disjoint union of locally closed subsets.
Secondly, χ is multiplicative: If f : X → Y is a map of algebraic

varieties, such that all fibres f−1(y) have equal Euler characteristic, we
have

χ(X) = χ(Y )χ(f−1(y)), (any y ∈ Y ).

This follows from the well known multiplicative property for topologi-
cal fibrations, together with the existence of a stratification of Y into
locally closed strata, such that f is locally trivial (in the transcendent
topology) above each stratum [10, Corollaire 5.1].

2.2. Geometry. Given a surface X, we write X [n] for the Hilbert
scheme parametrizing finite subschemes ξ ⊂ X of length n, and X (n)

for the symmetric product parametrizing positive zero-cycles on X of
degree n. There exists a map [8], the Hilbert-Chow morphism,

ρ : X [n] → X(n)

which on the level of sets sends a subscheme ξ ∈ X [n] to its cycle.
Fix a point p ∈ X. The punctual Hilbert scheme is the reduced

subvariety H(n) ⊂ X [n] consisting of subschemes supported at p. We
suppress both the point p and the surface X from the notation, as the
isomorphism class of H(n) is independent of these choices. We will
make essential use of the following:

Theorem 2.1 (Ellingsrud and Strømme [4]). The Euler characteristic

of the punctual Hilbert scheme H(n) equals the number p(n) of parti-

tions of n.
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In the case where X = A is an abelian surface, we may compose the
Hilbert-Chow morphism with the n-fold addition map on A to obtain
a map

A[n] → A.

The fibre over 0 ∈ A is the Kummer variety of Beauville:

Definition 2.2. Given A and n, the generalized Kummer variety KnA
is the closed subset

KnA =

{

ξ ∈ A[n]
∑

x∈ξ

mxx = 0

}

(where mx denotes the multiplicity of x in ξ) together with its reduced
induced structure.

From now on, we will drop the word “generalized”, and simply refer
to KnA as a Kummer variety.

2.3. Combinatorics. We will need an expression for the sum of divi-
sors function σ(n) in terms of the number of partitions function p(n).
Our starting point is the well known formula

(1) p(n) =
1

n

n
∑

k=1

σ(k)p(n− k),

which may be proved either using Euler’s generating function for p(n)
or by a counting argument [7, Theorem 6, Chapter 12].

We denote by α = (1α12α2 · · · ) the partition of n =
∑

iαi in which
i occurs αi times. We use the notation α ` n to signify that α is a
partition of n.

Solving (1) for σ(n) we find by induction the formula

σ(n) =
∑

α`n

∏

i

p(i)αic(α)

for integers c(α) satisfying the recursion

(2) c(α) =

{

n if α = (n1)

−
∑

i c(1
α1 · · · iαi−1 · · · ) otherwise.

In this formula, the partitions on the right hand side are obtained from
α = (1α12α2 · · · ) by lowering the i’th exponent by one. If αi is already
zero, we interpret c(1α1 · · · iαi−1 · · · ) as being zero.

3. Deformation to a product

We will in fact calculate the Euler characteristic ofKnA in the special
case where A = E×E ′ is a product of elliptic curves. To conclude that
the resulting formula will be valid also for an arbitrary abelian surface,
we use a deformation argument.
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Recall [2, Theorem 8.3.1 and Proposition 8.8.2] that there exists an
irreducible moduli space Ag,d for polarized abelian varieties (A,L) of
type d with level structure, where the type d = (d1, . . . , dg) is a tuple
of natural numbers, and a level structure is an isomorphism

K(L) ∼=

g
⊕

i=1

(Z/diZ)2.

Here, the group K(L) consists of the points a ∈ A such that T ∗
aL

∼= L.
Furthermore, if d1 ≥ 3, then Ag,d carries a universal family.

Now, a product A =
∏g

i=1Ei of elliptic curves admits polarizations
of any type. In fact, denoting by pr i : A → Ei the projection to the
i’th factor, the sheaf

L =

g
⊗

i=1

pr
∗
iOEi

(Di)

defines a polarization of type d = (d1, . . . , dg), whenever Di is a divisor
of degree di on Ei. From this it follows that, whenever A is a product
of g elliptic curves and A′ is an arbitrary g-dimensional abelian variety,
there exists an abelian scheme

X → S

over a nonsingular, irreducible curve S, with A and A′ among its fi-
bres. Namely, we may take S to be the (normalization of) any irre-
ducible curve through the two points in Ag,d corresponding to A and
A′, equipped with level structures of the same type, and X to be the
pullback of the universal family.

Proposition 3.1. Let A = E × E ′ be a product of elliptic curves,

and let A′ be an arbitrary abelian surface. Then the associated Kum-

mer varieties KnA and KnA′ are deformation equivalent via a smooth

deformation, and hence diffeomorphic. In particular, their Euler char-

acteristics are equal.

Proof. Let X → S be an abelian scheme of relative dimension two
over a nonsingular, irreducible curve, with A and A′ among its fibres.

Let X
[n]
S and X

(n)
S denote the relative Hilbert scheme and the relative

symmetric product. We have the Hilbert-Chow morphism [8]

ρ : X
[n]
S → X

(n)
S

and the n-fold addition map

µ : X
(n)
S → X
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over S, and both these maps commute with base change. Form the
fibred product K

K −−−→ X
[n]
S





y





y

µ◦ρ

S
σ

−−−→ X
where σ is the zero section. Then the fibres of K → S are the Kummer
varieties of the fibres of X → S, and in particular we have found the
required deformation between KnA and KnA′.

It only remains to check that the deformation is smooth. For this
we basically follow Beauville’s proof [1] for the nonsingularity of the
Kummer variety: It is straight forward to verify that there is a cartesian
diagram

K ×S X
ν

−−−→ X
[n]
S





y

q





y

µ◦ρ

X
nX−−−→ X

where ν is induced by the natural action of X on the Hilbert scheme by
translation, q is the second projection and nX denotes multiplication
by the natural number n. Since nX is étale, so is ν, and by Fogarty’s

result [5, Theorem 2.9], the Hilbert scheme X
[n]
S is smooth over S. We

conclude that K ×S X is smooth over S.
In particular, both X and K ×S X are flat over S. It follows that

K ×S X is flat over X via second projection q. By pulling back q over
the zero section σ, we recover the structure map K → S, which thus
is flat. To prove it is smooth it is therefore enough to prove that every
geometric fibre is nonsingular. In other words, we may replace S with
the spectrum of an algebraically closed field k, in which case the fact
that K ×k X is nonsingular implies that K is nonsingular. �

4. Projection maps

From now on, let A = E × E ′ be a product of elliptic curves. Let
pr : A→ E denote the first projection. The restriction of the composed
map

A[n] ρ
−−−→ A(n) pr(n)

−−−→ E(n)

to the Kummer variety KnA ⊂ A[n] is a map

π : KnA→ E(n).

Let P ⊂ E(n) denote the image of π. By definition of KnA, P is
precisely the set of effective divisors of degree n mapping to the zero
element 0 ∈ E under the n-fold addition map

E(n) → E.
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Remark 4.1. Although we will not need this, we can identify P as
follows: Since the points of an effective divisor D of degree n on E sums
to zero if and only it is linearly equivalent to the divisor n·0 = 0+· · ·+0,
we see that P is just the linear system |n ·0| ∼= Pn−1. It is easy to check
that a generic fibre of π is connected, and it follows from results of
Matsushita [9] that π is an example of a Lagrangian fibration. Together
with Proposition 3.1, this provides a simple example of the fact that
after deformation, any Kummer variety admits a Lagrangian fibration.

In any case, we have a “projection to the first factor”

π : KnA→ P ⊂ E(n)

and similarly a “projection to the second factor”

π′ : KnA→ P ′ ⊂ E ′(n),

mapping onto the sets P , resp. P ′, of effective degree n divisors sum-
ming to zero on E, resp. E ′. We first examine the fibres of π′.

Lemma 4.2. Let π′ : KnA → P ′ be the map defined above. If D ∈ P ′

is not of the form n · a for some point a ∈ E ′, then

χ(π′−1(D)) = 0.

Thus, the Euler characteristic of KnA is

χ(KnA) = n2χ(F )

where F is the fibre π′−1(n · 0).

Proof. Choose a point a ∈ SuppD, and write

D = D′ + k · a

where k is the multiplicity of a in D. By assumption, D′ is nonzero.
A point ξ ∈ KnA in the fibre π′−1(D) can be uniquely written as a
disjoint union

ξ = ξ1 ∪ ξ2

where ξ1 has length k and is supported in E×{a}. Taking the sum on
E of the points in ξ1, with multiplicities, we get a map

ν : π′−1(D) → E.

We claim that all fibres of ν are isomorphic. In fact, given p ∈ E we
may choose q, r ∈ E such that

kq = p, (n− k)r = −p.

Then, decomposing ξ = ξ1 ∪ ξ2 as above, the map

θ : ν−1(p) → ν−1(0), θ(ξ) = T−1
(q,0)(ξ1) ∪ T

−1
(r,0)(ξ2)

defines an isomorphism between the fibre over p and the fibre over 0.
Since the base space E for ν has Euler characteristic zero, we conclude
that the total space π′−1(D) has Euler characteristic zero also.
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For the last part of the lemma, let U ⊂ P ′ denote the set of divi-
sors with at least two distinct supporting points. We have just shown
that over U , all fibres of π′ have Euler characteristic zero. Using the
multiplicative property of the Euler characteristic (Section 2.1), we
conclude that π′−1(U) has Euler characteristic zero also. Now U is the
complement of the set of divisors of the form n · a, where a is an n-
division point on E ′, hence there are n2 points outside U . Furthermore,
any fibre π′−1(D) over a divisor of the form D = n · a is isomorphic
to the fibre F over n · 0, via translation by (0, a). Thus the formula
χ(KnA) = n2χ(F ) follows. �

We next study the fibre F = π′−1(n · 0) by means of the first pro-
jection map π : KnA → P . Note that F consists of those subschemes
ξ ∈ A[n], supported in E×{0}, such that the sum of its support points,
with multiplicities, equals 0. This set can be stratified according to the
multiplicities of the points in ξ. Let α = (1α12α2 · · · ) be a partition of
n, and define the locally closed subset V (α) ⊂ F by

V (α) = {ξ ∈ F ξ has αi points of multiplicity i}.

We define a corresponding locally closed subset W (α) ⊂ P by

W (α) = {D ∈ P D has αi points of multiplicity i}.

Then we can reduce the computation of the Euler characteristic of
F to the Euler characteristic of each W (α):

Lemma 4.3. With W (α) as above we have

χ(F ) =
∑

α`n

∏

i

p(i)αiχ(W (α)).

Proof. Clearly, the projection map π : KnA→ P maps V (α) to W (α).
Let

πα : V (α) →W (α)

denote the restricted map. The divisors D ∈ W (α) are of the form

D =
∑

i

(

i

αi
∑

j=1

pij
)

where the pij ∈ E are distinct points. Hence the fibre of πα above D
consists of subschemes of the form ξ = ∪ijξij, where each component
ξij has length i and is supported at (pij, 0) ∈ A. Thus every fibre of πα
is isomorphic to a product

∏

iH(i)αi of punctual Hilbert schemes. By
Theorem 2.1 we conclude

χ(V (α)) =
∏

i

p(i)αiχ(W (α)).

Finally, since F =
⋃

α`nW (α) is a disjoint union of locally closed sub-
sets, we get the result by summing the last formula over all partitions
of n. �
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5. The recursion

Comparing Lemmas 4.2 and 4.3 with Section 2.3, wee see that The-
orem 1.1 follows if we can show that 1

n
χ(W (α)) satisfies the recurrence

relation (2).

Lemma 5.1. We have χ(W (n1)) = n2 for every n.

Proof. W (n1) consists of the divisors of the form D = n · a, where a
is an n-division point on E. Hence we can identify W (n1) with the
set of n-division points En ∼= (Z/nZ)2, which is a finite group of order
n2. �

Lemma 5.2. Let α = (1α12α2 · · · ) be a partition of n, not equal to

(n1), and let i be an index such that αi 6= 0. Let

α′ = (1α1 · · · iαi−1 · · · )

denote the partition of n− i obtained from α by lowering the i’th expo-

nent by one. Then

χ(W (α)) = −
n2(

∑

j αj − 1)

αi(n− i)2
χ(W (α′)).

Proof. Basically, we would like to compare W (α) and W (α′) by means
of the incidence variety

{(a,D) D has multiplicity i at a} ⊂ E ×W (α).

However, if we remove from D the component supported at a, we do
get an effective divisor of degree n− i, but the sum of its points under
the group law on E is no longer zero. Thus there is no natural map
from the incidence variety to W (α′).

Instead, we let

Y =

{

(a, b,D)
D has multiplicity i at a
and (n− i)b = ia on E

}

⊂ E × E ×W (α).

It is clearly an algebraic subset. There are maps

Y
φ

−−−→ W (α)

ψ





y

W (α′)

where φ is induced by projection to the third factor, and

ψ(a, b,D) = Tb(D − i · a).

Here, D−i·a denotes the effective divisor obtained from D by removing
the component supported at a. Note that the sum of the supporting
points of Tb(D− i · a), with multiplicities, is zero, so ψ is indeed a map
to W (α′).
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We want to calculate the Euler characteristic χ(Y ) twice, using each
of the maps φ and ψ, and equate the results.

First, let D ∈ W (α) and consider the fibre

φ−1(D) ∼=

{

(a, b)
D has multiplicity i at a
and (n− i)b = ia on E

}

⊂ E × E.

Now D has αi points of multiplicity i. Let us denote them aj with
j = 1, . . . , αi. Then φ−1(D) is just the disjoint union of the αi sets

{b (n− i)b = iaj} ⊂ E

and each of these consists of (n− i)2 points. Thus every fibre of φ is a
discrete set of αi(n− i)2 points. In particular we have

(3) χ(Y ) = αi(n− i)2χ(W (α)).

Next, the fibre over a point D′ ∈ W (α′) can be described as

ψ−1(D′) ∼=

{

(a, b)
a+ b 6∈ D′ and
(n− i)b = ia

}

⊂ E × E.

This identification comes about since, if ψ(a, b,D) = D′, then the
divisor D is uniquely determined by the pair (a, b) as

D = T−1
b (D′) + i · a,

and this divisor has multiplicity i at a if and only if a 6∈ T−1
b (D′), or

equivalently a+ b 6∈ D′.
Now ψ−1(D′) is contained in the slightly bigger set

(4) B = {(a, b) (n− i)b = ia} ⊂ E × E,

which has Euler characteristic zero, as can be seen by projecting to
e.g. the second factor, and noting that all fibres are isomorphic (in
fact, they are discrete sets of i2 points).

It remains to count the pairs (a, b) ∈ B with a + b ∈ D′. For each
point c in the support of D′, the set

{(a, b) (n− i)b = ia and a + b = c} ∼= {b nb = ic} ⊂ E

consists of n2 points. Since there are
∑

j αj − 1 distinct points c ∈ D′,

we see that ψ−1(D′) is the complement in B to n2(
∑

j αj − 1) points.
Hence we have

χ(Y ) = −n2(
∑

j

αj − 1)χ(W (α′))

and equating with (3) gives the result. �

We can now finish the proof of the theorem by verifying that 1
n
χ(W (α))

satisfies the relation (2), that is,

1

n
χ(α) =

{

n if α = (n1)

−
∑

i
1
n−i

χ(1α1 · · · iαi−1 · · · ) otherwise.
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where we use the shorthand χ(α) = χ(W (α)). In fact, the first equality
is Lemma 5.1, and by Lemma 5.2 we have

−
∑

i

1

n− i
χ(1α1 · · · iαi−1 · · · ) =

∑

i

αi(n− i)

n2(
∑

j αj − 1)
χ(α)

=
1

n
χ(α)

∑

i αi(n− i)

n(
∑

j αj − 1)

=
1

n
χ(α)

since n =
∑

i iαi, α being a partition of n.

Remark 5.3. The recursion in Lemma 5.2 is easier to solve than the
one in Section 2.3. In fact, we find

c(α) =
1

n
χ(α) = (−1)

P

i
αi−1n

(
∑

i αi − 1)!
∏

i(αi!)

giving a closed solution to (2).
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