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1. Introduction

The punctual Hilbert scheme of a nonsingular surface is a variety whose closed
points correspond to subschemes of finite length n, say, supported at a fixed point
on the surface. It is singular in general. A less singular model has been suggested
by A. S. Tikhomirov [8], namely a certain component of the variety parameterizing
flags ξ1 ⊂ ξ2 ⊂ · · · ⊂ ξn of subschemes, where each ξi has length i and is supported
at the chosen point. It is not obvious, however, how to determine whether a given
flag belongs to this particular component. In this paper we show that a necessary,
and at least for n ≤ 7 sufficient, condition is that the associated filtration of ideals
I1 ⊃ I2 ⊃ · · · ⊃ In has the multiplicative property IiIj ⊆ Ii+j . The variety
parameterizing such flags can be algorithmically computed. In particular we find
that the suggested model for the punctual Hilbert scheme is singular for n = 5.
This corrects an assertion of S. A. Tikhomirov’s paper [9], where nonsingularity is
erroneously claimed for n = 5. In [8], A. S. Tikhomirov showed that the model is
nonsingular for n ≤ 4, a result we also obtain here.

In sections 2–4 we construct a scheme parameterizing flags of subschemes in a
more general setting. In sections 5–6 we specialize to the case of a nonsingular
surface.

I would like to thank Geir Ellingsrud for many valuable discussions. Also I thank
Roy Skjelnes and the anonymous referee for useful comments.

2. Punctual Hilbert schemes of flags

Let k be an algebraically closed field. By a scheme we shall mean a locally Noe-
therian scheme over k. Product of schemes means product over k throughout. If Y1

and Y2 are closed subschemes of a third scheme X, the expression Y1 ∩ Y2 denotes
their scheme theoretic intersection and Y1 ⊆ Y2 means scheme theoretic inclusion.
By a map of schemes we always mean a morphism in the category of schemes.

Let (A,m) be a local Artinian k-algebra of finite type. Then X = SpecA is a
projective scheme, hence the Hilbert scheme Hilbn(X) parameterizing subschemes
ξ ⊂ X of length n exists [5].

Introduce the following notation: For a map of schemes f : Y ′ → Y , let

fX : Y ′ × X → Y × X

denote the product of f with the identity map on X. Furthermore, for any scheme
Y , let

iY : Y → Y × X

denote the closed immersion obtained by identifying

Y ∼= Y × Spec(A/m) ⊂ Y × X.

To make formulas slightly more readable, we write iY∗ in place of (iY )∗ for push
forward along iY .
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We want to construct a scheme Flagn(X) parameterizing complete flags of sub-
schemes

ξ1 ⊂ · · · ⊂ ξn ⊂ X

such that each ξi has length i.

Definition 2.1. The Hilbert functor of complete flags in X of length n is the
contravariant functor

Flagn(X) : Schk → Sets

from the category of locally Noetherian schemes over k to the category of sets that
associates to a scheme T the set of n-tuples of families

T × Spec(A/m) = W1 ⊂ · · · ⊂ Wn ⊂ T × X,

with Wi being defined by the ideal sheaf Ji ⊂ OT×X , such that

(I) each Wi is flat and finite of degree i over T
(II) i∗T (Ji/Ji+1) is an invertible sheaf on T for i = 1, 2, . . . , n − 1.

Remark 2.2. For k-valued points, condition (II) is automatic, thus a scheme
representing Flagn(X) does parameterize complete flags of subschemes in X. In
fact, a k-valued point consists of subschemes ξi ⊂ X of length i, defined by ideals

In ⊂ · · · ⊂ I1 = m ⊂ A.

The sheaf i∗T (Ji/Ji+1) is now nothing but the k-vector space Ii/(Ii+1 +mIi). Con-
sider the obvious inclusions

Ii+1 ⊆ mIi + Ii+1 ⊆ Ii.

By Nakayama’s lemma, the rightmost inclusion must be strict. By the assumption
on lengths, the leftmost inclusion must then be an equality, that is, mIi ⊆ Ii+1.
Thus

Ii/(Ii+1 + mIi) = Ii/Ii+1

which is one-dimensional.
Similarly one can show that condition (II) is automatic for any reduced locally

Noetherian base scheme T , but we shall not need this fact.

In the next section we shall prove the following result.

Theorem 2.3. There exists a scheme Flagn(X) representing Flagn(X).

3. Construction of Flagn(X)

We construct Flagn(X) by induction on n. For n = 1 we clearly have Flag1(X) =
Spec k, with universal family

Z1 = Spec k × Spec k ⊂ Spec k × X.

The main idea is the following: A closed point in Flagn(X) corresponds to a
filtration of ideals I1 ⊃ · · · ⊃ In. Consider a closed point in P(In/mIn), that is a
vector space quotient

In/mIn → k → 0.

Such a quotient is also a homomorphism of A-modules, hence the kernel of the
composite

In → In/mIn → k

is an ideal In+1. The extended filtration I1 ⊃ · · · ⊃ In ⊃ In+1 defines a closed
point in Flagn+1(X), and conversely any point arises in this way. The rest of this
section is a straightforward globalization of this “fibrewise” construction.

Suppose now, for some fixed n, there exists a scheme F = Flagn(X) representing
Flagn(X), and let

Z1 ⊂ · · · ⊂ Zn ⊂ F × X
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denote the universal flag, with Zi defined by the ideal sheaf Ii ⊂ OF×X . Define
the coherent OF -module

En = i∗FIn

and let

π : P(En) → F

denote the structure map. We want to show that P(En) represents Flagn+1(X) by
exhibiting a universal flag

Z̃1 ⊂ · · · ⊂ Z̃n+1 ⊂ P(En) × X.

For i = 1, . . . , n, simply let

Z̃i = π−1
X (Zi) ⊂ P(En) × X

which, since Zi is flat over F , is defined by the ideal sheaf

Ĩi = π∗
XIi.

Furthermore, we define

Z̃n+1 ⊂ P(En) × X

by the ideal sheaf Ĩn+1, constructed as follows: Let

(1) φ1 : Ĩn → i
P(En)
∗ i∗

P(En)Ĩn = i
P(En)
∗ π∗En

be the canonical surjection and let

(2) φ2 : i
P(En)
∗ π∗En → i

P(En)
∗ O(1)

be the map obtained by applying i
P(En)
∗ to the universal quotient

(3) π∗En → O(1) → 0

on P(En). Then define Ĩn+1 to be the kernel of φ2 ◦ φ1. The horizontal row in the
following diagram is then exact:

(4)

i
P(En)
∗ π∗En

0 - Ĩn+1
- Ĩn

-

φ1
-

i
P(En)
∗ O(1)

φ2
?

- 0

By the short exact sequence in (4) we see that i∗
P(En)(Ĩn/Ĩn+1) is invertible,

hence condition (II) in definition 2.1 is fulfilled. The same exact sequence may be
rewritten

0 → i
P(En)
∗ O(1) → O eZn+1

→ O eZn
→ 0

from which we see that Z̃n+1 is flat and finite of degree n + 1 over P(En), hence
condition (I) is satisfied as well.

The following theorem ends the induction step and thus proves theorem 2.3:

Theorem 3.1. The flag Z̃1 ⊂ · · · ⊂ Z̃n+1 constructed above has the following
universal property: For any scheme T and any T -valued point

T × Spec(A/m) = W1 ⊂ · · · ⊂ Wn+1 ⊂ T × X

of Flagn+1(X), there exists a unique map

f : T → P(En)

such that Wi = f−1(Z̃i) for each i. Hence P(En) represents Flagn+1(X).
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Proof. Let Ji ⊂ OT×X be the sheaf of ideals defining Wi. By the induction
hypothesis we have assumed that F represents Flagn(X), so the families W1, . . . ,Wn

determine a unique map g : T → F such that Wi = g−1
X (Zi) for i = 1, . . . , n. Since

Zi is flat over F , the inverse image g−1
X (Zi) is defined by g∗XIi, hence Ji = g∗XIi.

We want to show that g extends uniquely to a map f in the diagram

(5)

P(En)

T
g

-

f -

F

π
?

such that f−1
X (Z̃n+1) = Wn+1, or equivalently f∗

X(Ĩn+1) = Jn+1. Extending g to a
map f in the diagram (5) is equivalent to giving a quotient

(6) g∗En → L → 0

where L is an invertible sheaf on T . In fact, f is then the unique map such that
(6) is obtained by applying f∗ to the universal quotient (3).

Uniqueness: Assume there exists an f in diagram (5) such that f ∗
X(Ĩn+1) =

Jn+1. We want to show that this determines the quotient (6) uniquely. This can
be seen by applying f∗i∗

P(En) to diagram (4). Firstly, applying i∗
P(En) to the map φ1

in (1) we obtain the identity map on

(7) i∗
P(En)Ĩn = i∗

P(En)π
∗
XIn = π∗i∗FIn = π∗En.

Furthermore, applying i∗
P(En) to φ2 in (2) we recover the universal quotient (3).

Thus, the result of applying i∗
P(En) to diagram (4) is the following diagram:

π∗En

i∗
P(En)Ĩn+1

- i∗
P(En)Ĩn

-
==

==
==

==
=

O(1)
?

- 0

Now applying f∗ and using the identity i∗T f∗
X = f∗i∗

P(En), we obtain

g∗En

i∗TJn+1
- i∗TJn

-
==

==
==

==
=

L
?

- 0

where L = f∗O(1). Hence f corresponds to the quotient

(8) i∗TJn → i∗T (Jn/Jn+1) → 0

and is thus uniquely determined by the families Wi.
Existence: Simply define L = i∗T (Jn/Jn+1) and let f be the unique map corre-

sponding to the quotient (8). This makes sense, since L is invertible by assumption.

It remains only to check that we have f ∗
X Ĩn+1 = Jn+1. For this, apply f∗

X to the
short exact sequence in (4) to obtain

(9) f∗
X Ĩn+1 → Jn → iT∗ L → 0.

Now observe that the canonical map Jn/Jn+1 → iT∗ L is an isomorphism, under
which the rightmost map in (9) may be identified with the canonical map Jn →

Jn/Jn+1. Thus the kernel is f∗
X Ĩn+1 = Jn+1, that is, f−1

X (Z̃n+1) = Wn+1.

Proposition 3.2. The scheme Flagn(X) is connected.
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Proof. If f : X → Y is a closed continuous surjective map of topological spaces,
it is elementary that X is connected if both Y and the fibers of f are. We apply
this to the structure map

P(En) → Flagn(X).

This map is proper and the fibers are projective spaces. Hence Flagn+1(X) = P(En)
is connected if Flagn(X) is. The conclusion follows by induction on n.

4. Punctual Hilbert schemes of multiplicative flags

Definition 4.1. A k-valued point in Flagn(X), corresponding to a filtration of
ideals

In ⊂ · · · ⊂ I1 = m ⊂ A

is multiplicative if we have IiIj ⊆ Ii+j for all i + j ≤ n.

We next construct a subscheme of Flagn(X), parameterizing only multiplicative
flags in X.

Definition 4.2. The Hilbert functor of multiplicative complete flags in X of
length n is the contravariant functor

Multn(X) : Schk → Sets

from the category of locally Noetherian schemes over k to the category of sets that
associates to a scheme T the set of n-tuples of families

T × Spec(A/m) = W1 ⊂ · · · ⊂ Wn ⊂ T × X,

with Wi being defined by the ideal sheaf Ji ⊂ OT×X , such that

(I) each Wi is flat and finite of degree i over T
(II) i∗T (Ji/Ji+1) is an invertible sheaf on T for all i

(III) JiJj ⊆ Ji+j for all i + j ≤ n.

We want to show that the condition JiJj ⊆ Ji+j is closed, in the strong sense
that Multn(X) is a closed subfunctor of Flagn(X). This is a consequence of the
following lemma:

Lemma 4.3. Let π : Y → S be a morphism of locally Noetherian schemes and let
W,Z ⊆ Y be closed subschemes such that Z is flat and finite over S. Then there
exists a unique S-scheme

i : S′ → S

such that

(I) Z ×S S′ ⊆ W ×S S′

(II) if T → S is any S-scheme satisfying Z ×S T ⊆ W ×S T then there exists a
unique morphism g : T → S′ over S.

Furthermore, i is a closed immersion.

Proof. Suppose the lemma holds whenever S is affine. Then we may apply
the lemma to each Sα in an affine open cover {Sα} of S. Thus there exists closed
immersions iα : S′

α → Sα, uniquely determined by properties (I) and (II) when
replacing S, W and Z with Sα, W ∩ Sα and Z ∩ Sα. Again applying the lemma
to an affine open cover of each intersection Sα ∩ Sβ , we see that the immersions
{iα} agree on the overlaps. Hence they may be glued to form the required closed
immersion i : S′ → S. Thus we may assume S is affine.

Since Z is finite over S, Z is affine as well. Then we may choose a free presen-
tation

(10) On
Z

φ
−→ OZ → OZ∩W → 0
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where Z ∩ W denotes the scheme theoretic intersection. Let f : T → S be any

morphism, and let Z̃ = Z ×S T and W̃ = W ×S T . We claim the condition Z̃ ⊆ W̃
is equivalent to requiring f∗π∗φ = 0: Form the fibre square

Y ×S T
f̃

- Y

T

π̃
? f

- S

π
?

.

Then applying f̃∗ to (10) gives a free presentation of the structure sheaf of Z̃ ∩ W̃ :

On
eZ

ef∗φ
−−→ O eZ

→ O eZ∩fW
→ 0

Thus the condition Z̃ ⊆ W̃ , or equivalently Z̃ ∩ W̃ = Z̃, is the same thing as

requiring f̃∗φ = 0. Now the restriction of π̃ to Z̃ is finite, hence affine, so f̃∗φ = 0

if and only if π̃∗f̃
∗φ = 0. Furthermore, as Z is flat over S, π̃∗f̃

∗φ = f∗π∗φ. Hence

Z̃ ⊆ W̃ if and only if f∗π∗φ = 0 as claimed.
Since Z is flat and finite over S,

(11) π∗O
n
Z

π∗φ
−−→ π∗OZ

is a map of locally free sheaves of finite rank on S. Thus π∗φ can be locally repre-
sented by a matrix of regular functions, hence its vanishing locus has a canonical
structure of a closed subscheme i : S ′ → S. Then i∗π∗φ = 0, so i has property (I).
Furthermore, if a morphism f : T → S satisfies f ∗π∗φ = 0, then the image in OT

of the ideal sheaf defining S ′ ⊂ S is zero, which says that f factors through i. So i
has property (II).

Theorem 4.4. Multn(X) is a closed subfunctor of Flagn(X).

Proof. Let S denote a scheme and hS its functor of points. Consider a cartesian
diagram

h - Multn(X)

hS

?

- Flagn(X)
?

where h is the fibre product functor. We claim there exists a closed subscheme
S′ ⊆ S and an isomorphism h ∼= hS′ such that the map h → hS is compatible with
the inclusion map hS′ → hS .

The image of a morphism T → S under the given map hS → Flagn(X) is a flag

(12) W1 ⊂ · · · ⊂ Wn ⊂ X × T.

Let Ji ⊂ OX×T denote the ideal sheaf corresponding to Wi. By definition, h is the
subfunctor of hS whose T -valued points are the morphisms T → S such that the
corresponding flag (12) has the multiplicative property

(13) JiJj ⊆ Ji+j for all i + j ≤ n.

Thus our claim is that there is a closed subscheme S ′ ⊆ S such that T → S factors
through S′ if and only if property (13) holds. This can be seen as follows:

The image of the identity map idS under the given map hS → Flagn(X) is a flag

(14) Z1 ⊂ · · · ⊂ Zn ⊂ X × S

over S, with Zi corresponding to some ideal sheaf Ii ⊂ OX×S . For any morphism
T → S, the corresponding flag (12) is just the pullback of the flag (14) along T → S.
Thus the existence of S′ ⊆ S is a consequence of lemma 4.3, applied to Y = X ×S,
W = V (IiIj) and Z = Zi+j , for each i and j.
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Corollary 4.5. There exists a closed subscheme Multn(X) ⊆ Flagn(X) repre-
senting Multn(X).

Remark 4.6. The scheme Multn(X) can be constructed more explicitly in the
same fashion that we constructed Flagn(X): Consider the universal flag

Z1 ⊂ · · · ⊂ Zn ⊂ Flagn(X) × X,

with Zi defined by the ideal sheaf Ii. Denote by

W1 ⊂ · · · ⊂ Wn ⊂ Multn(X) × X

their restriction to Multn(X), with Wi defined by the ideal sheaf Ji. In section 3
we constructed Flagn+1(X) as P(En), where En = i∗FIn. Thus Multn+1(X) is the
maximal subscheme of P(En) such that the restriction of the universal flag has the
multiplicative property. This is precisely the universal property of

π : P(Fn) → Multn(X)

where

Fn = Jn/
∑n−1

i=0 Ji+1Jn−i,

considered as a coherent sheaf on Multn(X) ∼= W1 ⊂ Multn(X)×X. Thus we have
an isomorphism Multn+1(X) ∼= P(Fn) over Multn(X). The universal multiplicative
flag

W̃1 ⊂ · · · ⊂ W̃n+1 ⊂ Multn+1(X) × X

is defined by ideals J̃1 ⊃ · · · ⊃ J̃n+1 where J̃i = π∗
XJi for i ≤ n, whereas J̃n+1 is

the kernel of the canonical map

J̃n → i
P(Fn)
∗ O(1)

where O(1) now denotes the tautological invertible sheaf on P(Fn).

Proposition 4.7. The scheme Multn(X) is connected.

Proof. Using the construction of Multn(X) in remark 4.6, the proof of 3.2 can
be repeated.

5. Punctual Hilbert schemes of points on a nonsingular surface

For the rest of this text we consider the following situation: Assume k has char-
acteristic zero. Fix an algebraic surface S over k and a nonsingular point p ∈ S.
Let OS,p denote the local ring at p and let mp ⊂ OS,p denote its maximal ideal.
Any subscheme ξ ⊂ S of length n and supported at p is contained in the (n− 1)’st
infinitesimal neighbourhood X = SpecOS,p/m

n
p . Thus the scheme Hilbn(X) pa-

rameterizes length n subschemes of S supported at p. We let

H(n) = Hilbn(X)red

denote the underlying reduced subscheme. We suppress S and p from the notation,
as the definition of H(n) only depends on the (n−1)’st infinitesimal neighbourhood
of p, whose isomorphism class is independent of the choices of S and p.

It is well known that H(n) is irreducible and has dimension n − 1 (proved by
Briançon [1] over the complex numbers, see e.g. Ellingsrud and Lehn [2] for a proof
in a more general setting). However, it is singular in general. For instance, H(3) is
isomorphic to the projective cone over the twisted cubic in P

3. In the rest of this
paper we present work towards finding a natural resolution of singularities of H(n).

Following Le Barz [7], we make the following definition:

Definition 5.1. A subscheme ξ ⊂ S, supported at p, is curvilinear if there
exists a curve C which contains ξ and is nonsingular at p.
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It is well known ([1], [6]) that the subset of H(n) consisting of curvilinear sub-
schemes is open, dense and nonsingular. The following result is also well known:

Lemma 5.2. Let ξ ⊂ S be a subscheme supported at a point p. If ξ is curvilinear,
there is a unique flag

ξ1 ⊂ · · · ξn−1 ⊂ ξ

with ξi of length i. In fact, ξi is the intersection of ξ with the (i−1)’st infinitesimal
neighbourhood of p in S.

Proof. Suppose C is a nonsingular curve through p containing ξ, locally defined
by the ideal J ⊂ OX,p. Let ξi ⊂ ξ be a subscheme of length i and let I ⊂ Ii ⊂ OX,p

be the ideals defining ξ and ξi. Then we have m
i
p ⊆ Ii, hence

J + m
i
p ⊆ I + m

i
p ⊆ Ii.

But the left hand side is the ideal defining the (i−1)’st infinitesimal neighbourhood
of p in C, which has colength i since C is nonsingular. Since the right hand side
ideal Ii has colength i also, the inclusions are actually equalities. In particular
Ii = I + m

i
p, which shows that ξi is uniquely determined as the intersection of ξ

with the (i − 1)’st infinitesimal neighbourhood of p in S.

Define
HF (n) = Flagn(X)red

which is a reduced scheme whose closed points correspond to flags of subschemes
in S supported at p. The canonical map

Flagn(X) → Hilbn(X)

induces a map
ρn : HF (n) → H(n).

Proposition 5.3. There is a unique component HF
′(n) ⊆ HF (n) which is

mapped birationally onto H(n) by ρn.

Proof. Let U ⊆ H(n) be the open subset corresponding to curvilinear sub-
schemes. By lemma 5.2, the fibre ρ−1

n (ξ) is a single point for every (closed) point
ξ ∈ U . Hence ρn is bijective over U . Since ρn is proper and U is nonsingular,
Zariski’s main theorem [4, prop. 4.4.1] shows that ρn is an isomorphism over U .
Thus the closure HF

′(n) of ρ−1
n (U) in HF (n) is the unique component mapping

birationally onto H(n).

Denote by
ρ′n : HF

′(n) → H(n)

the restricted map. We call this a partial resolution of H(n). This construction
has been studied by Tikhomirov in [8], where he proves that ρ′

n is a resolution
of singularities for n ≤ 4. The problem addressed in the next section is how to
determine whether a given flag belongs to the component HF

′(n). This leads us to
a different proof of Tikhomirov’s result (theorem 6.1) and also the new result that
HF

′(5) is singular (theorem 6.2).
Define

HMF (n) = Multn(X)red
which is a reduced scheme whose closed points correspond to multiplicative flags of
subschemes in S supported at p. Since Multn(X) is a closed subscheme of Flagn(X),
we find that HMF (n) is a closed subscheme of HF (n). The motivation for studying
HMF (n) is the following observation:

Proposition 5.4. Any (closed) point in HF
′(n) is multiplicative, hence HF

′(n)
is contained in HMF (n).
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Proof. Denote by U ⊆ H(n) the open set consisting of curvilinear points. Let
V ⊆ HF

′(n) denote the inverse image of U by the map ρ′
n : HF

′(n) → H(n). By
definition, HF

′(n) is the closure of V in HF (n).
First consider a (closed) point in V , that is, a flag

ξ1 ⊂ · · · ⊂ ξn

with ξn curvilinear. Then, if ξi corresponds to the ideal Ii ⊂ OX,p we have

Ii = m
i
p + In for all i

by lemma 5.2. Then it is obvious that IiIj ⊆ Ii+j .
Thus V ⊂ HMF (n). Since HMF (n) is closed in HF (n) and HF

′(n) is the closure
of V , we have HF

′(n) ⊂ HMF (n).

Question 5.5. Is the converse to proposition 5.4 true, i.e. do we have an equality
HF

′(n) = HMF (n)? As HF
′(n) is a component of HF (n), this is equivalent to

asking whether HMF (n) is irreducible.

The calculations in section 6 show that the answer to the question is positive
for n ≤ 7. For higher n we do not know. We remark that HMF (n) is at least
connected, by proposition 4.7.

6. Examples

To describe HMF (n), we follow the construction of Multn(X) in remark 4.6. More
explicitly, let U = SpecA be an affine open subset of Multn(X). We want to
describe an affine open cover for the inverse image of U in Multn+1(X), denoted
Multn+1(X)

∣∣
U

. With notation as in remark 4.6, the family Wi is defined over U

by the ideal Ji = Γ(U × X,Ji) in the affine coordinate ring of U × X. Then

Multn+1(X)
∣∣
U

= P(M)

where
M = Γ(U,Fn) = Jn/

∑n−1
v=0Jv+1Jn−v

considered as an A-module. To give concrete equations for P(M), choose a free
presentation

Ar (gij)
−−−→ As (fj)

−−→ M → 0.

Then P(M) = Proj R where

(15) R = A[t1, . . . , ts]/(
∑

jg1jtj , . . . ,
∑

jgrjtj).

Thus P(M) is covered by the affine open subsets Vi = SpecRi where Ri is the
degree 0 part of the localization Rti

. The universal quotient is the homomorphism

M ⊗ Ri → Ri → 0

sending fj ⊗ 1 to Tj = tj/ti (in particular fi ⊗ 1 7→ 1). Hence, on Vi the universal
flag is defined by ideals

J̃1 ⊃ · · · ⊃ J̃n+1

where J̃v = JvRi for v ≤ n, and

J̃n+1 = (Tjfi − fj)j 6=i + (
∑n−1

v=0Jv+1Jn−v)Ri.

As long as the rings Ri are nilpotent-free, this gives an algorithm for computing
an open cover of HMF (n). Otherwise we should divide by the nilradical to get the
underlying reduced scheme. It turns out that in all our examples, i.e. whenever
n ≤ 7, Multn(X) is already reduced, hence HMF (n) = Multn(X). We do not know
whether this is true for arbitrary n.

Clearly, Mult2(X) = HMF (2) ∼= H(2) ∼= P
1. The next result describes HMF (3)

and HMF (4). We are going to use the following (well known and easy to derive)
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classification of punctual subschemes of length 2 and 3 on a nonsingular surface:
For a suitable choice of local parameters, any subscheme of length two may be
defined by an ideal of the form

(x, y2) ⊂ OS,p.

Thus any such subscheme is curvilinear. For subschemes of length three, there are
two types: Firstly there are the curvilinear ones, which for a suitable choice of local
parameters may be defined by an ideal of the form

(x, y3) ⊂ OS,p.

Secondly there is just one non curvilinear subscheme of length three, namely the
first infinitesimal neighbourhood of p, defined by

m
2
p = (x2, xy, y2) ⊂ OS,p.

Theorem 6.1. For n = 2 and 3 the sheaf Fn is locally free of rank 2, hence
HMF (n + 1) is a P

1-bundle over HMF (n). In particular, HMF (3) and HMF (4)
are nonsingular.

Proof. Any point in HMF (2) is curvilinear, hence F2 has rank two everywhere.
Thus it is locally free.

A punctual subscheme of length 3 is either the first order infinitesimal neigh-
bourhood of p or it is curvilinear. Consider a point in HMF (3), that is a filtration
of ideals

I3 ⊂ I2 ⊂ I1 = mp.

If I3 is curvilinear, then

I3/(I1I3 + I2
2 ) = I3/I1I3

is two dimensional as before. If not, then I3 = (x2, xy, y2). For a suitable choice of
local parameters we may assume I2 = (x, y2). Then

I1I3 + I2
2 = (x2, y3, xy2)

and hence

I3/(I1I3 + I2
2 ) = 〈xy, y2〉

is two dimensional. Thus F3 has rank two everywhere.

The surface HMF (3) can be determined completely. In fact it is isomorphic to
the minimal ruled surface F3. For this, let R = k[a0, a1], then HMF (2) = H(2) =
Proj R with universal family defined by the ideal

(16) J = (a1y − a0x, x2, xy, y2) ⊂ R ⊗k OX,p.

Then the sheaf F2 corresponds to the graded R-module N with generators

f = a1y − a0x g = x2

h = xy k = y2

where f has degree 1 and the rest have degree 0. The relations are

a1h = a0g a1k = a0h.

From this we conclude that N is isomorphic to R(−1) ⊕ R(2) in positive degrees,
where f generates the summand corresponding to R(−1), and g, h and k generate
the summand corresponding to R(2). Thus

F2 = OP1(−1) ⊕OP1(2)

and the associated projective bundle is F3.
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Finally, we remark that HF (4) is reducible, so HMF (4) = HF
′(4) is not the only

component. In fact, above the rational curve in HF (3) = HMF (3) consisting of
filtrations of the form

m
2
p = I3 ⊂ I2 ⊂ I1 = mp

where I2 varies freely in a P
1, every fibre in HF (4) is a P

2. Thus the inverse image
of this curve has dimension 3, which therefore cannot be contained in the irreducible
three dimensional variety HMF (4). To give an explicit example, the ideals

(x2, xy, y3) ⊂ (x2, xy, y2) ⊂ (x2, y) ⊂ (x, y)

define a point in HF (4) which is not multiplicative.
For n = 5 we obtain the following, which corrects [9, Theorem 1].

Theorem 6.2. HMF (5) is singular along a curve, but irreducible.

Proof. We compute the restriction of HMF (5) to a particular open affine chart
U4 ⊂ HMF (4). By the same method one can compute an open cover explicitly.

With notation as in equation (16), let U2 ⊂ HMF (2) be the open affine subset
defined by a0 6= 0. Then

U2 = Spec k[a]

where a = a1/a0, and the universal flag is defined by the ideals

J1 = (x, y) J2 = (ay − x, y2).(17)

Carrying through the recipe given above, we find

HMF (3)
∣∣
U2

= Proj k[a][b0, b1]

where the generators bi correspond to ti in equation (15). We define the open
affine U3 ⊂ HMF (3) by b0 6= 0, then the universal flag on U3 is defined by ideals
J1 ⊃ J2 ⊃ J3, where J1 and J2 are the ideals in (17) and

J3 = (b(ay − x) − y2, (ay − x)x, (ay − x)y)

where b = b1/b0. (We should really write J1k[a, b] and J2k[a, b] in place of J1 and
J2, but this shouldn’t cause any confusion.) Since

a ((ay − x)y) − (ay − x)x = (ay − x)2 ∈ J2
2

we find that U3 trivializes F3 and

HMF (4)
∣∣
U3

= Proj k[a, b][c0, c1].

where again the new coordinates ci correspond to ti in equation (15). Define U4 ⊂
HMF (4) by c0 6= 0, then the universal flag is defined over U4 by

J4 = (c(b(ay − x) − y2) − (ay − x)y, b(ay − x)y − y3, (ay − x)2)

where c = c1/c0, together with J1, J2, J3 as above.
Now we are in position to describe the restriction of HMF (5) to U4. The module

M = J4/(J1J4 + J2J3)

is generated by

f = c(b(ay − x) − y2) − (ay − x)y

g = b(ay − x)y − y3

h = (ay − x)2

and the element bh − cf is contained in J2J3, thus

HMF (5)
∣∣
U4

= Proj k[a, b, c][F,G,H]/(bH − cF ).

In fact, since this is irreducible, reduced and of dimension four, the found relation
bh − cf is the only one.
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Thus HMF (5)
∣∣
U4

is irreducible and singular along a curve. Repeating the cal-

culations while moving U4 around proves the statement.

By the same procedure one may test the irreducibility of HMF (n), and hence
question 5.5, for higher n. The explicit calculations get rather involved, but with the
aid of the computer program Singular [3], using a primary decomposition algorithm,
it has been verified that HMF (n) is irreducible for n ≤ 7, and also that Multn(X)
is already reduced. At 8 points we stopped due to lack of computer power.
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