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Abstract. The purpose of this paper is to construct examples
of stable rank 2 vector bundles on abelian threefolds and to study
their moduli.

More precisely, we consider principally polarized abelian three-
folds (X,Θ) with Picard number 1. Using the Serre construction,
we obtain stable rank 2 bundles realizing roughly one half of the
Chern classes (c1, c2) that are a priori allowed by the Bogomolov
inequality and Riemann-Roch. In the case of even c1, we study
first order deformations of these vector bundles E , using a sec-
ond description in terms of monads, similar to the ones used by
Barth–Hulek on projective space. We find that all first order de-
formations of the bundle are induced by first order deformations
of the corresponding monad, which leads to the formula

dim Ext1(E ,E ) = 1
3∆(E ) ·Θ + 5,

where ∆ denotes the discriminant 4c2 − c21.
In the simplest nontrivial case (where c1 = 0 and c2 = Θ2),

we construct an explicit parametrization of a Zariski open neigh-
bourhood of E in its moduli space: this neighbourhood is a ruled,
nonsingular variety of dimension 13, birational to a P1-bundle over
X ×X ×H, where H is the Hilbert scheme (of Kodaira dimension
zero) of two points on the Kummer threefold X/(−1).
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1. Introduction

The geometry of moduli spaces for stable vector bundles on Calabi-
Yau (in the broad sense of having trivial canonical bundle) threefolds is
largely unknown, but of high interest, not least due to their relevance
for string theory, and the existence of Donaldson-Thomas invariants. In
lower dimension, stable vector bundles on Calabi-Yau curves (i.e. ellip-
tic) were classified by Atiyah, and are parametrized by the same curve.
Moduli spaces for stable vector bundles on Calabi-Yau surfaces (i.e. K3
or abelian) are holomorphic symplectic varieties (Mukai [14], generaliz-
ing Beauville [2], generalizing Fujiki [4]). This is a very rare geometric
structure, at least on complete varieties. One may ask whether equally
interesting geometries appear in higher dimension.

Here we construct examples of rank 2 vector bundles on abelian
threefolds, and study their moduli. This work is a first step in a pro-
gram where we eventually wish to study Donaldson-Thomas type in-
variants attached to moduli spaces for stable vector bundles on abelian
threefolds. Such computations are a topic for future work; here we
merely construct examples. The hope is that the abelian case may
shed light also on arbitrary Calabi-Yau threefolds, but be more acces-
sible.

Our central tool, besides the Serre construction, is monads: these
are usually put to work on rational varieties, and it may be slightly
surprising that they can be useful also in our context. On the other
hand, we do not know whether the bundles we construct, and their
moduli, show typical or exceptional behaviour.

1.1. Notation. We work over an algebraically closed field k of char-
acteristic zero. Stable and semistable sheaves, and their moduli, are in
the sense of Simpson [16], so that stability is measured by the normal-
ized Hilbert polynomial. The sheaves we construct in this text will in
fact have the stronger property of µ-stability in the sense of Mumford
and Takemoto, which is measured by the slope.

The words line bundles and vector bundles are used as synonyms for
invertible and locally free sheaves. In particular, an inclusion of vector
bundles means an inclusion as sheaves, i.e. the quotient need not be
locally free. We take Chern classes to live in the Chow ring modulo
numerical equivalence.

Let (X,Θ) be a principally polarized abelian variety. If x ∈ X is a
point, we write Tx : X → X for the translation map, and define Θx as
Tx(Θ) = Θ + x. We identify X with its dual Pic0(X) by associating
with x the line bundle Px = OX(Θ − Θx). The normalized Poincaré
line bundle on X ×X is denoted P; its restriction to X × {x} is Px.
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2. The Serre construction

In this section we apply the standard Serre construction to produce
rank 2 vector bundles on principally polarized abelian threefolds, in-
cluding examples with small c2. This is the content of Theorem 2.2.
These examples (in the case of even c1) will be our objects of study for
the rest of this paper.

2.1. The bundles/curves correspondence. Let E be rank 2 vector
bundle on a projective variety X, and let s ∈ Γ(X,E ) be a section. If
the vanishing locus V (s) has codimension 2, then: (1) it is a locally
complete intersection, and (2) the line bundle ωX ⊗

∧2E restricts to
the canonical bundle on V (s). Under a cohomological condition on∧2E , the Serre construction says that any codimension two subscheme
Y ⊂ X with these two properties is of the form V (s). More precisely:

Theorem 2.1. Let X be a nonsingular projective variety with a line
bundle L satisfying Hp(X,L −1) = 0 for p = 1, 2. Let Y ⊂ X be a
codimension two locally complete intersection subscheme with canonical
bundle isomorphic to (ωX ⊗L )|Y . Then there is a canonical isomor-
phism

Hom((ωX ⊗L )|Y , ωY ) ∼= Ext1(IY ⊗L ,OX)

which is functorial in Y with respect to inclusions, and such that iso-
morphisms on the left correspond to locally free extensions on the right.

For the proof we refer to Hartshorne [7, Thm. 1.1 and Rem. 1.1.1],
who attributes “all essential ideas” to Serre [15].

It follows that, whenever we choose an isomorphism (ωX ⊗L )|Y ∼=
ωY , the Theorem gives an extension

(1) 0 - OX
s- E - IY ⊗L - 0

with E locally free, and hence Y = V (s) as required. We will say that
E and Y corresponds if there is a short exact sequence (1).

2.2. Construction of bundles. For the rest of this paper, we fix a
principally polarized abelian threefold (X,Θ). We assume that its Pi-
card number (the rank of the Néron-Severi group) is 1, although this
assumption is essential only to ensure stability. Thus every divisor
is numerically equivalent to an integral multiple of Θ. Moreover (see
e.g. Debarre [3]), an application of the endomorphism construction of
Morikawa [12] and Matsusaka [11] shows that every 1-cycle is numeri-
cally equivalent to an integral multiple of Θ2/2.

So fix classes c1 = mΘ and c2 = nΘ2/2, where m and n are integers.
If these are the Chern classes of a rank two vector bundle E , then, by
Riemann-Roch

χ(E ) = 1
6
(c3

1 − 3c1c2) = m3 − 3
2
nm,
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so either m or n is even. Moreover, if E is µ-semistable, then Bogo-
molov’s inequality reads m2 ≤ 2n.

Theorem 2.2. Let (X,Θ) be a principally polarized abelian threefold
of Picard number 1, and let c1 = mΘ and c2 = nΘ2/2, with m and n
integers. Assume

(1) the strict Bogomolov inequality holds, i.e. m2 < 2n, and
(2) n is even and mn is divisible by 4.

Then there exist µ-stable rank 2 vector bundles with Chern classes c1

and c2.

Remark 2.3. For each c1 ∈ NS(X), the theorem realizes every second
c2 that is allowed by (strict) Bogomolov and Riemann-Roch. The other
half seems much more subtle. In fact, we do not know any example of
a rank 2 vector bundle, stable or not, that violates condition (2). The
situation in which equality occurs in the Bogomolov inequality will be
analysed in Proposition 2.5.

Before proving the theorem, we rephrase µ-stability for E as a con-
dition on the corresponding curve Y . The argument is similar to that
of Hartshorne [7, Prop. 3.1] in the case of P3.

Lemma 2.4. Let (X,Θ) be as in the theorem, and E be a rank 2 vector
bundle corresponding to a curve Y ⊂ X. Let c1(E ) = mΘ. Then the
following are equivalent.

(1) E is µ-stable.
(2) m > 0 and Y is not contained in any translate of any divisor

in the linear system |kΘ|, where k is the round down of m/2.

Proof. Since E has a section, it is clear that m > 0 is necessary for its
µ-stability. Write bm/2c and dm/2e for the round down and round up
of m/2. The bundle E fails µ-stability if and only if it contains a line
bundle Px(lΘ) ⊂ E with l ≥ m/2. Since Px(lΘ) has global sections
for l positive, it suffices to test with l = dm/2e. Thus E is µ-stable if
and only if

(2) H0(X,E (−dm/2eΘ)⊗Px)) = 0 for all x ∈ X.

Now twist the short exact sequence (1) with −dm/2eΘ and take coho-
mology. Since Hp(X,OX(−dm/2eΘ))) = 0 for p = 0, 1, and the deter-
minant of E has the form Pa(mΘ) for some a ∈ X, we find that the
vanishing (2) is equivalent to the vanishing of H0(X,IY (bm/2cΘ) ⊗
Px) for all x ∈ X. Since Θ is ample, this is equivalent to

H0(X,IY ⊗ T ∗xOX(bm/2cΘ)) = 0 for all x ∈ X
which is condition (2). �

Proof of Theorem 2.2. Since µ-stability, and the conditions (1) and (2)
in the statement of the theorem, are preserved under tensor product
with line bundles, it suffices to prove the theorem for m = 2 and m = 3.
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When m = 2, the theorem claims that there are µ-stable rank 2
bundles with c1 = 2Θ and c2 = NΘ2 for all integers N ≥ 2. For this,
choose N generic points ai ∈ X and let

Y =
⋃N
i=1Yi, Yi = Θai ∩Θ−ai .

We want to apply the Serre construction to this curve.
First we claim that the Yi’s are pairwise disjoint, for ai chosen gener-

ically. In fact, for i 6= j write

Yi ∩ Yj = (Θai ∩Θaj)︸ ︷︷ ︸
V

∩ (Θ−ai ∩Θ−aj)︸ ︷︷ ︸
W

,

where V and W have codimension 2. By an easy moving lemma for
abelian varieties [10, Lemma 5.4.1], a general translate V +x intersects
W properly, hence empty. Thus (replacing x by a “square root” x/2)
also V + x and W − x are disjoint. So Yi and Yj will be disjoint after
a small perturbation ai 7→ ai + x, aj 7→ aj + x.

The normal bundle of each Yi ⊂ X is OYi(Θai) ⊕ OYi(Θ−ai), hence
the canonical bundle ωYi is OYi(Θai +Θ−ai). The theorem of the square
shows that Θai + Θ−ai is linearly equivalent to 2Θ. Since the Yi’s are
disjoint, we conclude that Y is a locally complete intersection with
canonical bundle OY (2Θ). The Serre construction produces a bundle
E with determinant OX(2Θ) and second Chern class [Y ] =

∑
i[Yi] =

NΘ2.
Next we show µ-stability. We claim that the only theta-translates

containing Yi are Θai and Θ−ai . This is a standard result: the inter-
section of two theta-translates are never contained in a third one. In
fact, consider the Koszul complex:

0→ OX(−Θai −Θ−ai)→ OX(−Θai)⊕ OX(−Θ−ai)→ IYi → 0.

Twist with an arbitrary theta-translate Θx and apply cohomology to
obtain an isomorphism

H0(X,OX(Θx −Θai))⊕H0(X,OX(Θx −Θ−ai))
∼= H0(X,IYi(Θx)).

Thus Θx contains Yi if and only if x = ±ai as claimed. It follows
that, for N ≥ 2, no theta-translate contains Y , and so E is µ-stable by
Lemma 2.4.

In the case m = 3, we take

Y =
⋃N
i=1Yi, Yi = Di ∩Θ−2ai

for N generic points ai ∈ X and generic divisors Di ∈ |2Θai |. A similar
argument to the one above shows that the Serre construction produces
a µ-stable rank 2 vector bundle with determinant OX(3Θ) and second
Chern class 2NΘ2, for each N ≥ 2. �

Recall that a vector bundle E is semihomogeneous if it is translation
invariant up to twist: for every x ∈ X, there exists a line bundle L ∈
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Pic0(X) such that T ∗x (E ) is isomorphic to E ⊗L . Semihomogeneous
bundles are well understood thanks to work of Mukai [13].

Proposition 2.5. Let (X,Θ) be as in the Theorem, and let c1 = mΘ
and c2 = nΘ2/2 satisfy m2 = 2n, i.e. equality occurs in the Bogomolov
inequality. Then E is a non simple, semihomogeneous vector bundle.

Proof. Semihomogenous bundles of rank r are numerically character-
ized (Yang [17]) by the property that the all the Chern roots equal c1/r.
This means that the Chern character takes the form ch = r exp(c1/r),
or, equivalently, the total Chern class is c = (1 + c1/r)

r. If r = 2, this
is equivalent to c2

1 = 4c2. Thus E is semihomogeneous.
By Mukai [13], simple semihomogeneous vector bundles are classi-

fied, up to twist by homogeneous line bundles, by the element δ = c1/r
in NS(X)⊗Q. But m is even, since m2 = 2n, so there exist line bundles
with class c1/2. This rules out the possibility that E is simple. �

Remark 2.6. Mukai [13] shows that every semihomogeneous bundle is
semistable, and it is simple if and only if it is stable. Thus the bundles
E in Proposition 2.5 are semistable, but not stable. Mukai also shows
that the Harder-Narasimhan filtration of a semihomogeneous vector
bundle with δ = c1/r has factors that are simple semihomogeneous
bundles with the same invariant δ. In our (rank 2) situation, this
shows that E is an extension of line bundles (possibly split) with first
Chern class c1(E )/2.

2.3. The curves Θa∩Θ−a. For later use, we make two observations re-
garding the curve obtained by intersecting two general theta-translates,
which was used as input for the Serre construction above.

Lemma 2.7. There is a Zariski open subset U ⊂ X such that Θ ∩Θx

is a nonsingular irreducible curve for all x ∈ U .

Proof. Let Θns ⊂ Θ denote the nonsingular locus, and let

d : Θns ×Θns → X

be the difference map, so that d−1(x) ∼= Θns∩Θns
x . Generic smoothness

(see Hartshorne [6, III 10.8]) applied to d shows that Θns ∩ Θns
x is

nonsingular for generic x ∈ X.
It is well known that the surface Θ is normal, in particular it is

nonsingular in codimension one. (In fact it has at most one singular
point, in which case X is the Jacobian of a hyperelliptic curve.) It
follows that Θ ∩ Θx does not intersect the singular locus of Θ, nor of
Θx, for x outside a certain divisor in X. Thus Θ ∩ Θx = Θns ∩ Θns

x is
nonsingular for generic x.

Finally Θ ∩ Θx is an ample divisor on the normal surface Θ, hence
it is connected (see Hartshorne [6, III 7.9]). �
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Lemma 2.8. Let a and b be two points in X and define Ya = Θa∩Θ−a
and Yb = Θb ∩ Θ−b. Then, for a and b generic, no divisor in |2Θ|
contains both Ya and Yb.

Proof. Begin by imposing the conditions on a and b that Ya and Yb are
disjoint irreducible curves, and also that the two curves Θa ∩ Θ±b are
irreducible. Assume there is a divisor D ∈ |2Θ| containing both Ya
and Yb. We will prove the lemma by producing a curve C such that
C ∩Θb = C ∩Θ−b, and then deduce that b is not generic.

First we observe that D meets Θa ∩ Θb properly. As the latter is
irreducible, it suffices to verify that it is not contained in D. In fact,
one checks that the linear subsystem of |2Θ|, consisting of divisors
containing Θa ∩ Θb, is the pencil spanned by Θa + Θ−a and Θb + Θ−b
(for this, determine H0(IΘa∩Θb

(2Θ)) using the Koszul resolution). The
only element of this pencil containing Ya is Θa + Θ−a, and the only
element containing Yb is Θb + Θ−b, so no element contains both.

In particular, D and Θa intersect properly, so D ∩ Θa is a curve
containing Ya. Since D ∩ Θa has cohomology class 2Θ2, and Ya has
class Θ2, there is another effective 1-cycle C of class Θ2 such that

D ∩Θa = Ya + C

as 1-cycles. We saw above that D ∩ Θa meets Θb properly, so we
consider the 0-cycle

D ∩Θa ∩Θb = Ya ∩Θb + C ∩Θb.

The left hand side contains Yb ∩Θa. Since Ya and Yb are disjoint, this
means that C ∩Θb contains Yb ∩Θa, i.e. their difference is an effective
cycle. But these are 0-cycles of the same degree, so they are equal.
None of the arguments given distinguish between b and −b, so we find
that also C ∩Θ−b equals Yb ∩Θa. Thus we have established

C ∩Θb = C ∩Θ−b.

To conclude, we apply the endomorphism construction of Morikawa
[12] and Matsusaka [11], which we briefly recall. The endomorphism
α = α(C,Θ) associated to C and Θ is defined by

α(x) =
∑

(C ·Θx)−
∑

(C ·Θ)

where each term means the sum, using the group law, of the points
in the intersection cycle appearing. This is well defined as a point
in X, although the intersection cycle is only defined up to rational
equivalence. The constant term is included to force α(0) = 0, i.e. to
make α a group homomorphism. We have just established that C
intersects Θb and Θ−b properly, and the two intersections are equal
already as cycles. In particular α(b) = α(−b), so all we need to know
to prove the lemma is that α is not constant, so that α(2b) 6= 0 defines a
nonempty Zariski open subset. But in fact, a theorem of Matsusaka [11]
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tells us that α is multiplication by 2 (the intersection number C ·Θ = 3!
divided by dimX = 3), so the condition required is just that 4b 6= 0,
i.e. b is not a 4-torsion point. �

2.4. Parameter count. As an immediate consequence of Lemma 2.8,
we find that, if E corresponds to a curve Y with at least two components
of the form Θai ∩Θ−ai , for sufficiently general points ai, then the short
exact sequence

0 - OX
s- E - IY (2Θ) - 0,

shows that H0(X,E ) is spanned by s.
We can deform the bundle E by varying the data in the Serre con-

struction, and a heuristic parameter count goes as follows: the choice
of the points ai ∈ X contributes 3N dimensions, and the choice of an
isomorphism ωY ∼= OY (2Θ) contributes N dimensions, since Y has N
connected components. Thus we get a 4N -dimensional family of vector
bundles E with a section s. As we just saw, the section is unique up
to scale, so if we forget the section, we are left with 4N − 1 parame-
ters. In addition there are two obvious ways of deforming a bundle on
an abelian variety: translation by points, and twist by line bundles in
Pic0(X). Including these in the count, and assuming all the parame-
ters to be independent, we conclude that the Serre construction gives
a family of vector bundles of dimension 4N + 5.

In contrast, we show in Section 5 that the space of first order infini-
tesimal deformations of E has dimension 8N − 3. The two dimensions
4N + 5 and 8N − 3 coincide only in the first nontrivial case N = 2,
and in this case, as we detail in Section 6, the Serre construction gives
an open subset of the corresponding moduli space. We see no way of
computing the number of infinitesimal deformations of E directly from
the Serre construction (even in the N = 2 case), and will employ a
different viewpoint involving monads.

3. Monads

In this section we rephrase the Serre construction of vector bundles
used in Theorem 2.2, in the case of even c1, in terms of certain monads.
This new viewpoint is then used to analyse first order deformations:
we will show that every first order deformation of the vector bundle is
induced by a first order deformation of the monad.

Definition 3.1 (Barth–Hulek [1]). A monad is a composable pair of
maps of vector bundles

A
φ- B

ψ- C

such that ψ ◦ φ is zero, ψ is surjective and φ is an embedding of vector
bundles (i.e. injective as a homomorphism of sheaves, and with locally
free cokernel).
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Thus E = Ker(ψ)/ Im(φ) is a vector bundle.

We will also use chain complex notation (M •, d) for monads, so that
M−1 = A , M0 = B, M1 = C and M i is zero otherwise, and the
differential d consists of two nonzero components d−1 = φ and d0 = ψ.
Thus M • is exact except in degree zero, where its cohomology is E =
H0(M •). By a family of monads over some base S, we mean a monad
on S ×X.

3.1. Decomposable monads. Consider rank 2 vector bundles E with
trivial determinant

∧2E ∼= OX on the principally polarized abelian
threefold (X,Θ). From the construction in Theorem 2.2, we have a
series of such vector bundles, such that E (Θ) corresponds to a curve
Y =

⋃
iYi, where Yi = Θai ∩Θ−ai .

We now show that, corresponding to the decomposition of Y into
its connected components Yi, there is a way of building up E from the
Koszul complexes1

(3)

ξi : 0 - OX(−Θ)

(
ϑ+i
ϑ−i

)
- Pai ⊕P−ai

(ϑ−i −ϑ
+
i )
- IYi(Θ) - 0

where ϑ±i are nonzero global sections of OX(Θ±ai). This can be conve-
niently phrased in terms of a monad.

Proposition 3.2. Let a1, . . . , aN ∈ X be generically chosen points and
Yi = Θai ∩Θ−ai. Then E (Θ) corresponds to Y =

⋃N
i=1Yi if and only if

E is isomorphic to the cohomology of a monad

(N − 1)OX(−Θ)
φ-
⊕N

i=1(Pai ⊕P−ai)
ψ- (N − 1)OX(Θ)

where, if we decompose φ and ψ into pairs

φ± : (N − 1)OX(−Θ)→
⊕N

i=1P±ai

ψ± :
⊕N

i=1P±ai → (N − 1)OX(Θ)

then we have

φ± =


ϑ±1

ϑ±2
. . .

ϑ±N−1

ϑ±N ϑ±N · · · ϑ±N

 , ψ± = ±(φ∓)
∨

for nonzero sections ϑ±i ∈ Γ(X,OX(Θ±ai)).

Proof. If E (Θ) and Y correspond, there is an extension

ξ : 0 - OX(−Θ) - E - IY (Θ) - 0.

1Here and elsewhere, whenever f : F1 → F2 is a homomorphism of sheaves, we
use the same symbol to denote any twist f : F1(D)→ F2(D).
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Giving such an extension is, by Theorem 2.1, equivalent to giving an
isomorphism OY (2Θ) ∼= ωY . The obvious decomposition

Hom(OY (2Θ), ωY ) ∼=
⊕N

i=1 Hom(OYi(2Θ), ωYi)

gives, when applying Theorem 2.1 also to each Yi, a corresponding
decomposition

(4) Ext1(IY (Θ),OX(−Θ)) ∼=
⊕N

i=1 Ext1(IYi(Θ),OX(−Θ)),

which sends ξ to an N -tuple of extensions ξi. Each Hom(OYi(2Θ), ωYi)
is one dimensional, since Yi is connected, so Ext1(IYi(Θ),OX(−Θ)) is
one dimensional, too. This shows that each ξi is of the form (3).

From the functoriality in Theorem 2.1, it follows that the inclusion
of each direct summand in (4) is the natural map, induced by the
inclusion IY ⊂ IYi . Thus ξ is obtained from the ξi’s by pulling
them back over this inclusion of ideals, and adding the results in
Ext1(IY (Θ),OX(−Θ)). By definition of (Baer) addition in ext-groups,
this means that there is a commutative diagram

0 - NOX(−Θ) -
⊕N

i=1(Pai ⊕P−ai)
-
⊕N

i=1IYi(Θ) - 0

0 - OX(−Θ)

β
??

- F

??
-
⊕N

i=1IYi(Θ)

wwww
- 0

0 - OX(−Θ)

wwwww
- E

∪

6

- IY (Θ)

α

∪

6

- 0

where the top row is
⊕

iξi, the bottom row is ξ, the top left square
is pushout over the N -fold addition β, and the bottom right square is
pullback along the inclusion α. This diagram presents E as the middle
cohomology of a complex

Ker(β)
φ-
⊕N

i=1(Pai ⊕P−ai)
ψ- Coker(α).

Now identify Ker(β) with (N−1)OX(−Θ) by means of the monomor-
phism

(N − 1)OX → NOX , (f1, . . . , fN−1) 7→ (f1, . . . , fN−1,−
∑

ifi)

and similarly identify Coker(α) with (N − 1)OX(Θ) by means of the
epimorphism

NOX → (N − 1)OX , (f1, . . . , fN) 7→ (f1 − fN , . . . , fN−1 − fN)

(the latter is surjective even when restricted to
⊕

iIYi because the Yi’s
are pairwise disjoint). Via these identifications, the homomorphisms φ
and ψ are represented by the matrices as claimed — except that ϑ±N
appears with opposite sign, but we are free to rename ϑ±N to −ϑ±N . �

Definition 3.3. A monad is decomposable if it is isomorphic, as a
complex, to a monad of the form appearing in Proposition 3.2.
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With this terminology, a rank 2 vector bundle E can be resolved by
a decomposable monad if and only if E (Θ) corresponds to a disjoint
union Y =

⋃
iYi, where Yi = Θai ∩Θ−ai , via the Serre construction.

Remark 3.4. The symmetry seen in the decomposable monads is no
accident, but reflects the self duality of E corresponding to the natural
pairing ∧ on E with values in

∧2(E ) ∼= OX . See Barth–Hulek [1].

4. Digression on the hyperext spectral sequence

Our basic aim is to understand first order deformations of the bun-
dles E appearing as the cohomology of a decomposable monad. The
strategy is to analyse Ext1(E ,E ) using the first hyperext spectral se-
quence associated to the monad. This is in principle straight forward,
but requires some honest calculation. As preparation, we collect in this
section a few standard constructions in homological algebra, for ease
of reference. We fix an abelian category A with enough injectives and
infinite direct sums, and denote by K(A) the homotopy category of
complexes and by D(A) the derived category.

4.1. The spectral sequence. Let (M •, dM) and (N •, dN) denote com-
plexes in A, and assume that N • is bounded from below. The first
hyperext spectral sequence is a spectral sequence

(5) Epq
1 =

⊕
i Extq(M i, N i+p)⇒ Extp+q(M •, N •).

Briefly, take a double injective resolution N • → I•• with I•• concen-
trated in the upper half plane (for instance a Cartan-Eilenberg res-
olution), and form the double complex Hom••(M •, I••). The required
spectral sequence is the first spectral sequence associated to this double
complex.

4.2. The edge maps. Along the axis q = 0, the first sheet of the
spectral sequence (5) has the usual hom-complex Hom•(M •, N •). Its
cohomology is

Ep,0
2 = HomK(A)(M

•, N •[p])

where the right hand side denotes homotopy classes of morphisms of
complexes. Since all differentials emanating from Ep,0

r for r ≥ 2 vanish,
there are canonical edge maps

Ep,0
2 � Ep,0

∞ ⊂ Extp(M •, N •).

View the right hand side as the group HomD(A)(M
•, N •[p]) of mor-

phisms in the derived category. Then it is straight forward to verify
that the edge map is in fact the canonical map

HomK(A)(M
•, N •[p])→ HomD(A)(M

•, N •[p]).
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4.3. Differentials at E2. For q = 1, it is convenient to view elements
of Ext1(M i, N i+p) as extensions, in the sense of short exact sequences,
and this viewpoint leads to the following interpretation of the differen-
tials dp12 at the E2-level:

Lemma 4.1. Let ξ ∈ Ep1
1 be given as a collection of extensions

ξi : 0→ N i+p → X i →M i → 0.

(1) We have dp11 (ξ) = 0 if and only if there are maps f i such that
the diagram

· · · - N i+p−1 dN- N i+p dN- N i+p+1 - · · ·

· · · - X i−1
?

f i−1
- X i

?
f i- X i+1

?
- · · ·

· · · - M i−1
?

dM- M i
?

dM- M i+1
?

- · · ·
commutes.

(2) When dp11 (ξ) = 0 and (f i) is as above, ξ represents an element
of Ep1

2 , and the differential

dp12 : Ep1
2 → Ep+2,0

2 = HomK(A)(M
•, N •[p+ 2])

sends ξ to the morphism having components M i−1 → N i+p+1

induced by f i◦f i−1. In particular dp12 (ξ) = 0 if and only if there
exists a collection (f i) making the middle row in the diagram
in (1) a complex.

Proof. This is straight forward, although tedious, to verify directly from
the construction of the spectral sequence. �

4.4. Serre duality. Let X be a scheme of pure dimension d over
a field, with a dualizing sheaf ωX such that Grothendieck-Serre du-
ality holds. Let M • be a bounded below complex of coherent OX-
modules. We obtain two hyperext spectral sequences (5): one abutting
to Extn(OX ,M

•) = Hn(X,M •), which we denote by E, and one abut-

ting to Extn(M •, ωX), which we denote by Ê. Then E is nothing but
the first hypercohomology spectral sequence, and the E1-levels of E
and Ê are Grothendieck-Serre dual. We need to know that the duality
extends to all sheets.

Lemma 4.2. The two spectral sequences E and Ê are dual in the
following sense:

(1) There are canonical dualities between the vector spaces Epq
r and

Ê−p,d−qr for all p, q, r, extending the Grothendieck-Serre duality
between Hq(X,Mp) and Extd−q(Mp, ωX) for r = 1.
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(2) The differentials

dpqr : Epq
r → Ep+r,q−r+1

r

d̂−p−r,d−q+r−1
r : Ê−p−r,d−q+r−1

r → Ê−p,d−qr

are dual maps.

Proof. This seems to be standard. We include a sketch, following
Herrera–Lieberman [8] (who work in a slightly different context). Firstly,
for any three complexes L•, M •, N •, the Yoneda pairing

Exti(L•,M •)× Extj(M •, N •)→ Exti+j(L•, N •)

can be defined on hyperext groups by resolving M • and N • by in-
jective double complexes, and taking the double hom complex. On
this “resolved” level, the Yoneda pairing is given by composition, and
there is an induced pairing of hyperext spectral sequences in the ap-
propriate sense, which specializes to the usual Yoneda pairing between
ext-groups of the individual objects Ll, Mm, Nn at the E1-level. Spe-
cialize to the situation L• = OX and N • = ωX to obtain a morphism
of spectral sequences from E to the dual of Ê. At the E1-level this is
the Grothendieck-Serre duality map, hence an isomorphism, which is
enough to conclude that it is an isomorphism of spectral sequences [5,
Section 11.1.2]. �

Remark 4.3. If M • and N • denote two complexes of vector bundles,
then we may apply the Lemma to the complex (M •)∨ ⊗ N • to ob-
tain a duality between the two hyperext spectral sequences abutting to
Extn(M •, N •) and Extn(N •,M • ⊗ ωX), respectively.

5. Deformations of decomposable monads

We now apply the homological algebra from the previous section
to analyse first order deformations of vector bundles E which can be
resolved by a decomposable monad. Firstly, we find that deforma-
tions obtained by varying the isomorphism ωY ∼= OY (2Θ) in the Serre
construction coincide with the deformations obtained by varying the
differential in the monad, while keeping the objects fixed. Secondly,
and this is the nontrivial part, we find that all first order deformations
of E can be obtained by also deforming the objects in the monad, and
there are more of these deformations than those obtained by varying Y
in the Serre construction. Since the objects in the monad are sums of
line bundles, their first order deformations are easy to understand, so
we are able to compute the dimension of Ext1(E ,E ), in Theorem 5.7.

5.1. Calculations in the spectral sequence. Let E be the rank 2
vector bundle arising as the cohomology of a decomposable monad

M • : A
φ- B

ψ- C

given explicitly in Proposition 3.2.
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E−2,3
1

- E−1,3
1

- E0,3
1

E0,2
1

E0,1
1

E0,0
1

- E1,0
1

- E2,0
1

Figure 1. The first sheet in the spectral sequence for Exti(E ,E )

The hyperext spectral sequence from Section 4.1 gives

(6) Epq
1 =

⊕
i Extq(M i,M i+p)⇒ Extp+q(E ,E ).

Using that ample line bundles on X have sheaf cohomology concen-
trated in degree 0, whereas anti-ample line bundles have sheaf coho-
mology in top degree, we see that the nonzero terms in the first sheet
have the shape depicted in Figure 1. It follows that all differentials
at level Er vanish for r = 3 and r > 4. Also, the duality of Sec-
tion 4.4 shows that each term Epq

r is dual to E−p,3−qr , and similarly
for the differentials. In this section we analyse the E2-sheet, and get
as a consequence that the spectral sequence in fact degenerates at the
E3-level.

5.1.1. The objects Epq
2 . By duality, it suffices to consider the lower

half of Figure 1. The only nonzero differentials in this area, at the
E1-level, are in the lower row q = 0. We observed in Section 4.2
that the cohomology groups of this row are the groups of morphisms
M • →M •[p] modulo homotopy.

Lemma 5.1. The dimensions of Ep,0
2 for p = 0, 1, 2 are 1, N − 1 and

6(N − 1)2 −N + 2, respectively.

In the proof we will use the following notation: for any map f : A →
B, its transpose f t : B → A ∨ = C is

f t = f∨ ◦ ι,
where ι : B

∼→ B∨ is the direct sum over all i of the skew symmetric(
0 −1
1 0

)
: Pai ⊕P−ai →P−ai ⊕Pai .

Thus ψ = φt.

Proof. The vector spaces in question are the cohomologies of the com-
plex

0 - E0,0
1

d0,01- E1,0
1

d1,01- E2,0
1

- 0,
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where

dimE0,0
1 = dim

(
Hom(A ,A )⊕ Hom(B,B)⊕ Hom(C ,C )

)
= 2(N − 1)2 + 2N

dimE1,0
1 = dim

(
Hom(A ,B)⊕ Hom(B,C )

)
= 4N(N − 1)

dimE2,0
1 = dim Hom(A ,C )

= 8(N − 1)2

(7)

(use that Γ(X,OX(Θ±ai)) has dimension 1, and Γ(X,OX(2Θ)) has di-
mension 8). Thus it suffices to compute the dimensions of the kernels
of the two differentials d0,0

1 and d1,0
1 , i.e. the vector spaces of morphisms

of degree 0 and 1 from the monad to itself.
One checks immediately that any morphism M • →M • (of degree 0)

is multiplication with a scalar, so

(8) dimE0,0
2 = 1.

Next we compute the dimension of the space of morphisms M • →
M •[1]. Since C = A ∨, such a morphism is given by an element of

Hom(A ,B)⊕ Hom(B,A ∨),

which we may write as (µ,−νt), where both µ and ν are homomor-
phisms A → B. The sign on −νt is inserted to compensate for the
sign on the differential in the shifted complex M •[1]; thus (µ,−νt) de-
fines a morphism M • →M •[1] if and only if νt ◦ φ = φt ◦ µ.

As in Proposition 3.2, we decompose these homomorphisms into pairs
µ± and ν±, and then

νt ◦ φ = (ν−)
∨ ◦ φ+ − (ν+)

∨ ◦ φ−

φt ◦ µ = (φ−)
∨ ◦ µ+ − (φ+)

∨ ◦ µ−.
(9)

Choosing generators ϑ±i ∈ Γ(X,OX(Θ±ai)), we may represent µ by a
matrix with entries µ±ijϑ

±
i , where µ±ij are scalars. Similarly for ν. Then

the two compositions (9) are given by (N−1)×(N−1) scalar matrices
with entries

(νt ◦ φ)ij = (µ+
ij − µ−ij)ϑ+

i ϑ
−
i + (µ+

Nj − µ
−
Nj)ϑ

+
Nϑ
−
N

(φt ◦ µ)ij = (ν+
ji − ν−ji)ϑ+

j ϑ
−
j + (ν+

Ni − ν
−
Ni)ϑ

+
Nϑ
−
N .

(10)

Recall that the Kummer map X → |2Θ| sends ai ∈ X to the divisor
Θai +Θ−ai . This implies that, for sufficiently general points ai, and i 6=
j, the three elements ϑ+

i ϑ
−
i , ϑ+

j ϑ
−
j and ϑ+

Nϑ
−
N are linearly independent

in Γ(X,OX(2Θ)). It follows easily that the two expressions in (10)
coincide for all i and j if and only if there are equalities of scalar
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(N − 1)× (N − 1) matrices

(µ+
ij)− (µ−ij) = (ν+

ij )− (ν−ij ) =


c1

c2

. . .
cN−1

cN cN · · · cN

 ,

where c1, . . . , cN are arbitrary scalars. Thus the vector space of mor-
phisms M • → M •[1] has a basis corresponding to the (µ+

ij), (ν+
ij ) and

(ci), hence has dimension 2N(N−1)+N . The expressions for dimEp,0
2

follow from this, together with (7) and (8). �

5.1.2. The differentials dpq2 . The only nonzero differentials at the E2-
level are d0,1

2 and its dual d−2,3
2 . So it suffices to analyse d0,1

2 . This is, by
Lemma 4.1, an obstruction map for equipping first order infinitesimal
deformations of the objects M i with differentials, and will henceforth
be denoted ω.

The domain

(11) E0,1
2 =

⊕
i Ext1(M i,M i)

of ω = d0,1
2 is canonically isomorphic to a direct sum of a large number

of copies of H1(X,OX). More precisely, for each i and j from 1 to N−1,
apply the bifunctor Ext1(−,−) to the i’th projection A → OX(−Θ) in
the first argument and the j’th inclusion OX(−Θ)→ A in the second
argument. This defines an inclusion

fij : H1(X,OX) ∼= Ext1(OX(−Θ),OX(−Θ)) ↪→ Ext1(A ,A )

and clearly the direct sum of all the fij’s is an isomorphism. Similarly,
for all i and j from 1 to N − 1, we define inclusions

hij : H1(X,OX) ∼= Ext1(OX(Θ),OX(Θ)) ↪→ Ext1(C ,C )

whose direct sum is an isomorphism. Finally, for all i from 1 to N , and
each sign ±, define inclusions

g±i : H1(X,OX) ∼= Ext1(P±ai ,P±ai) ↪→ Ext1(B,B)

induced by projection to and inclusion of the summand P±ai of B.
Note that also the direct sum of the g±i ’s is an isomorphism, since
Ext1(Px,Py) = H1(X,Py−x) vanishes unless x = y.

The obstruction map ω takes values in homotopy classes of mor-
phisms M • →M •[2]. Such a morphism is given by a single homomor-
phism from A to C , which can be presented as an (N − 1)× (N − 1)
matrix with entries in Γ(X,OX(2Θ)). We now give such a matrix
representative for the homotopy class ω(ξ), for any element ξ in each
summand H1(X,OX) of E0,1

2 .
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Lemma 5.2. For every i, the boundary map of the long exact coho-
mology sequence associated to the Koszul complex

0 - OX

(
ϑ+i
ϑ−i

)
- OX(Θai)⊕ OX(Θ−ai)

(ϑ−i −ϑ
+
i )
- IYi(2Θ) - 0

induces an isomorphism

H0(X,IYi(2Θ))/〈ϑ+
i ϑ
−
i 〉 ∼= H1(X,OX)

where 〈ϑ+
i ϑ
−
i 〉 denotes the one dimensional vector space spanned by the

section ϑ+
i ϑ
−
i .

Proof. Since H1(X,OX(Θ±ai)) = 0, there is an induced right exact
sequence

H0(X,OX(Θai))
⊕

H0(X,OX(Θ−ai))

- H0(X,IYi(2Θ)) - H1(X,OX) - 0.

Each summand H0(X,OX(Θ±ai)) is spanned by ϑ±i , which is sent to
∓ϑ+

i ϑ
−
i in H0(X,IYi(2Θ)). �

Proposition 5.3. Let ξ ∈ H1(X,OX). The obstruction map ω does
the following on each summand in its domain:

(1) Lift ξ to sections u and v of IYi(2Θ) and IYN (2Θ), respectively,
using the lemma. Then ω(fij(ξ)) is represented by the (N−1)×
(N − 1) matrix having j’th column (the transpose of)

(v · · · v u+ v v · · · v)
↑

(entry i)

and zeros everywhere else.
(2) Lift ξ to a section u of IYi(2Θ). If i 6= N , then ω(g±i (ξ)) is

represented by the (N − 1)× (N − 1) matrix having u at entry
(i, i), and zeros everywhere else. The remaining case ω(g±N(ξ))
is represented by the (N−1)× (N−1) matrix having all entries
equal to u.

(3) Lift ξ to sections u and v of IYj(2Θ) and IYN (2Θ), respectively.
Then ω(hij(ξ)) is represented by the (N − 1)× (N − 1) matrix
having i’th row

(v · · · v u+ v v · · · v)
↑

(entry j)

and zeros everywhere else.

Proof. Notation: In the commutative diagrams that follow, we will use
dotted arrows roughly to indicate maps we are about to fill in by some
construction.
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Part 1: We view ξ as an extension in Ext1(OX(−Θ),OX(−Θ)).
Consider the diagram

(12)

0 - OX(−Θ) - F - OX(−Θ) - 0

A
?

∩

φ
- B

φ̂i
?

ψ
-

φi

-

C
?

where the top row is the extension ξ, the bottom row is the monad, and
the leftmost vertical map is inclusion of the i’th summand, so in terms
of matrices, φi is the i’th column of φ. Suppose we can find a map
φ̂i making the left part of the diagram commute. Then it is straight
forward to verify, using Lemma 4.1, that ω(fij(ξ)) is represented by
the induced vertical map on the right, precomposed with projection
A → OX(−Θ) on the j’th summand.

Thus we seek φ̂i. The assumption that u is a lifting of ξ, means that
there is a commutative diagram

0 - OX(−Θ)

(
ϑ+i
ϑ−i

)
- Pai ⊕P−ai

(ϑ−i −ϑ
+
i )
- IYi(Θ) - 0

0 - OX(−Θ)

wwwww
- F

ũ
6

- OX(−Θ)

u
6

- 0

in which the rightmost square is a pullback. Similarly, the section v
fits in the pullback diagram:

0 - OX(−Θ)

(
ϑ+N
ϑ−N

)
- PaN ⊕P−aN

(ϑ−N −ϑ
+
N )
- IYN (Θ) - 0

0 - OX(−Θ)

wwwww
- F

ṽ
6

- OX(−Θ)

v
6

- 0

Now define φ̂i to be

(ũ, ṽ) : F - (Pai ⊕P−ai)⊕ (PaN ⊕P−aN )

followed by the appropriate inclusion to B. One verifies immediately
that φ̂i extends φi in (12), and that the induced map in the rightmost
part of that diagram is given by the vector as claimed in part 1.

Part 2: We view ξ as an extension in Ext1(P±ai ,P±ai). Consider
the diagram

0 - P±ai
- G - P±ai

- 0

C

ψ±i
?�

A

φ±i

6

�



VECTOR BUNDLES AND MONADS ON ABELIAN THREEFOLDS 19

where the top row is ξ, and the two vertical maps φ±i and ψ±i denote
the i’th row of φ± and the i’th column of ψ±. Suppose we can find
dotted arrows making the two triangles commute. Then one verifies,
using Lemma 4.1, that the composition of the two dotted arrows is a
representative for ω(g±i (ξ))).

The problem reduces to seeking s and t fitting in a commutative
diagram

(13)

0 - P±ai
- G - P±ai

- 0

OX(−Θ)

ϑ∓i
? t
�

OX(Θ)

∓ϑ±i
6

s

�

as follows: if i < N , then ∓(0, . . . , 0, s, 0, . . . , 0) would lift φ±i and
±(0, . . . , 0, t, 0, . . . , 0) would extend ψ±i . Their composition is the ma-
trix having t ◦ s in entry (i, i), and zeros elsewhere. If i = N , then
similarly ∓(s, . . . , s) and ±(t, . . . , t) would be the required lift and ex-
tension. Their composition is the matrix having all entries equal to
t ◦ s. Thus part 2 of the proposition will be established once we have
constructed such maps s and t having composition t ◦ s = u.

Now use that ξ is the pullback of the Koszul complex for Yi along u.
This enables us to construct the commutative diagram

0 - OX(−Θ)

(
ϑ+i
ϑ−i

)
- Pai ⊕P−ai

(ϑ−i −ϑ
+
i )
- IYi(Θ) - 0

P∓ai
�ϑ∓i

-

P∓ai

∓ϑ±i

-
�

0 - OX(−Θ)

wwwwwwwwwwww
- G ′

6

- OX(−Θ)

u
6

- 0

P∓ai

wwwwwwwwwwww
�ϑ∓i

-

P∓ai(−2Θ)

u
6

∓ϑ±i

-
�

as follows: the top row is the Koszul complex, and the two unlabelled
diagonal arrows in the top part are the canonical inclusion of and pro-
jection to the summand P∓ai . Pull back along u to get the short exact
sequence in the lower part of the diagram. Thus this sequence coincides
with ξ, twisted by P∓ai(−Θ). There are now uniquely determined dot-
ted arrows making the diagram commute, and their composition is u.
Up to twist by P±ai(Θ), the lower part of the diagram is thus the
required diagram (13). This ends the proof of part 2.

Part 3 is essentially dual to part 1, and is left out. �

By Lemma 2.8, we have

(14) H0(IYi(2Θ))⊕H0(IYj(2Θ)) = H0(OX(2Θ))
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for all i 6= j (the Lemma gives an inclusion of the left hand side into the
right hand side, and by Riemann-Roch, the two sides have the same
dimension). This decomposition of sections of OX(2Θ), together with
the explicit description of ω in the proposition, enables us to conclude:

Corollary 5.4. The obstruction map ω is surjective.

Proof. We show that any (N−1)×(N−1) matrix of sections of OX(2Θ)
represents an element in the image of ω. Let i and j be indices between
1 and N − 1.

Let u be a section of IYi(2Θ). Let ξ ∈ H1(X,OX) be its image
under the boundary map in Lemma 5.2. By the Proposition,

ω(fij(ξ)− fii(ξ) + g±i (ξ))

is represented by the matrix having u as entry (i, j) and zeros elsewhere.
Similarly, start with a section u of IYj(2Θ) instead, then

ω(hij(ξ)− hii(ξ) + g±i (ξ))

is represented by the matrix having u as entry (i, j) and zeros elsewhere.
By (14) it follows that the image of ω contains an element represented
by any matrix (sij) of sections of OX(2Θ), subject to the condition that
sii is a section of IYi(2Θ).

Now start with an arbitrary section v of IYN (2Θ) and let ξ be its
image in H1(X,OX). Then the representative of ω(fii(ξ)) in the Propo-
sition is equivalent, modulo matrices (sij) of the form already obtained,
to the matrix having v as element (i, i) and zeros elsewhere. Apply (14)
with j = N to conclude that any matrix of sections of OX(2Θ), with
no restriction on the diagonal elements, represents an element in the
image of ω. �

Corollary 5.5. The spectral sequence (6) degenerates at E3.

Proof. The previous corollary implies E2,0
3 = 0. By duality also E−2,3

3 =
0. It follows from the shape of the first sheet, Figure 1, that all differ-
entials vanish at the E3-level and beyond. �

5.2. First order deformations. From the calculations in the previ-
ous section, we can understand infinitesimal deformations of the vector
bundle E in terms of its monad. Let k[ε] be the ring of dual numbers.
By a first order deformation of M •, we mean a monad over X ⊗k k[ε],
with M • as fibre over ε = 0, modulo isomorphism.

Theorem 5.6. Let M • be a decomposable monad with cohomology E .
The vector spaces of first order infinitesimal deformations of M • and of
E are isomorphic via the natural map, sending a first order deformation
of M • to its cohomology.
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Proof. Since the hyperext spectral sequence associated to the monad
degenerates at E3, and the only Epq

3 terms with p+ q = 1 are E0,1
3 and

E1,0
3 , there is a short exact sequence

(15) 0 - E1,0
3

- Ext1(E ,E ) - E0,1
3

- 0.

Let D(M •) be the vector space of first order deformations of M •. Thus
the claim is that the natural map D(M •) → Ext1(E ,E ) is an isomor-
phism.

Now E0,1
3 is the kernel of the obstruction map ω = d0,1

2 . By Lemma
4.1, this is the space of those first order deformations of the objects
in M •, that allow the differential dM to extend (non uniquely) to the
deformed objects. Via this identification, D(M •)→ E0,1

3 is the natural
forgetful map, so it is surjective. Moreover, its kernel is the space of
first order deformations of the differential in M •, keeping the objects
fixed. It remains to see that this space maps isomorphically to E1,0

3 .
By the shape of the spectral sequence (Figure 1) we have E1,0

3 = E1,0
2 ,

and, by Lemma 5.1, this is

E1,0
2 = HomK(X)(M

•,M •[1]).

The inclusion of E1,0
2 into Ext1(E ,E ) is the edge map discussed in

Section 4.2. This map factors canonically through D(M •): associate
to a map f : M • →M •[1] of complexes the first order deformation φ(f)
with objects M • ⊗k k[ε] and differential dM ⊗ 1 + f ⊗ ε. The resulting
diagram

HomK(X)(M
•,M •[1]) ⊂- Ext1(E ,E )

D(M •)

6

φ -

commutes up to sign. Thus φ is injective, and, moreover, its image in
D(M •) is exactly the space of first order deformations of the differential
in M •, with constant objects: any differential on M •⊗kk[ε], specializing
to dM for ε = 0, has the form dM ⊗ 1 + f ⊗ ε for some f satisfying

(dM ⊗ 1 + f ⊗ ε)2 = 0.

Since d2
M = 0 and ε2 = 0, this says that f ◦ dM + dM ◦ f = 0, i.e. f

defines a morphism M • →M •[1]. This gives the required identification
between E1,0

3 and deformations of the differential. �

Next, we give the dimension formula for Ext1(E ,E ), which we phrase
in a twist invariant way.

Theorem 5.7. Let E be a rank 2 vector bundle obtained as the coho-
mology of a decomposable monad. Then

dim Ext1(E ,E ) = 1
3
∆(E ) ·Θ + 5

where ∆ denotes the discriminant 4c2 − c2
1.
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Proof. Consider again the short exact sequence (15).
The space E0,1

3 is the kernel of the map ω = d0,1
2 studied in Section

5.1.2. Its domain (11) has dimension

(2(N − 1)2 + 2N) dimH1(X,OX) = 6(N − 1)2 + 6N

and its codomain E2,0
2 has dimension 6(N−1)2−N+2, by Lemma 5.1.

Since ω is surjective, the dimension of its kernel E0,1
3 is thus 7N − 2.

Moreover, the dimension of E1,0
3 = E1,0

2 is N − 1 by the same Lemma,
so Ext1(E ,E ) has dimension 8N − 3.

On the other hand, we know from the Serre construction that E (Θ)
has Chern classes c1 = 2Θ and c2 = NΘ2, and thus discriminant
(4N − 4)Θ2. The formula follows. �

Remark 5.8. The space of first order deformations obtained by vary-
ing the isomorphism ωY ∼= OY (2Θ), coincides with the space of first
order deformations of the differential in M •. In fact, it is trivial that
the former is contained in the latter, and these spaces have the same
dimension N − 1.

The dimension formula shows that, for N > 2, there are more first
order deformations of E than there are parameters in the Serre con-
struction (even including translation and twist, as in Section 2.4). We
leave open the questions whether there are honest (non infinitesimal)
deformations of E not induced by deformations of the monad, and
whether there are such deformations of the monad not induced by the
Serre construction.

6. Birational description of M(0,Θ2)

As before, let (X,Θ) be a principally polarized abelian threefold with
Picard number 1. We write M(c1, c2) for the coarse moduli space of
stable rank 2 vector bundles on X with the indicated Chern classes.

The main point in the preceding section is that all first order in-
finitesimal deformations of the vector bundles constructed in Section
4.4, in the case of even c1, can be realized as first order infinitesimal
deformations of a monad. In this section we show that in the first non-
trivial example, corresponding to N = 2, this statement holds not only
infinitesimally, but Zariski locally: by deforming the monad, we realize
a Zariski open neighbourhood of the vector bundle in its moduli space.

Theorem 6.1. Let E be the rank 2 cohomology vector bundle of a
decomposable monad, as in Proposition 3.2 for N = 2. Then, Zariski
locally around E , the moduli space M(0,Θ2) is a ruled, nonsingular
variety of dimension 13.

More precisely, there is a Zariski open neighbourhood around E which
is isomorphic to a Zariski open subset of a P1-bundle over X×X×H,
where H is the Hilbert scheme of two points in the Kummer threefold
X/(−1).
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Remark 6.2. The Hilbert scheme H in the Theorem has Kodaira
dimension zero [9, Theorem 11.1.2]. In particular M(0,Θ2) is not ra-
tional.

In the proof below we will realize the parametrization of M(0,Θ2)
using the language of monads. In terms of the Serre construction, we
could proceed as follows: Let (b, b′, Z) ∈ X × X × H. We view Z as
an unordered pair {±a1,±a2} of points in X modulo sign, to which
we associate the curve Y = Y1 ∪ Y2, with Yi = Θai ∩ Θ−ai . Choose
an isomorphism α : OY (2Θ) ∼= ωY modulo scale — this corresponds to
a (general) point in the P1-bundle in the Theorem. Then the Serre
construction associates to (Y, α) a rank two vector bundle E (Θ), and
we send the whole data set (b, b′, Z, α) to T ∗b (E )⊗Pb′ ∈M(0,Θ2). For
the details, we prefer monads, although this is a matter of taste:

Proof. Firstly, we parametrize decomposable monads

(16) OX(−Θ)
φ-
⊕2

i=1(Pai ⊕P−ai)
ψ- OX(Θ)

by an open subset of a P1-bundle P over H,
The isomorphism class of (16), as a complex, determines the element
{±a1,±a2} in the Hilbert scheme H, and for fixed ai’s, the differential

φ = (ϑ+
1 , ϑ

−
1 , ϑ

+
2 , ϑ

−
2 ), ψ = (ϑ−1 ,−ϑ+

1 , ϑ
−
2 ,−ϑ+

2 )

can be parametrized as follows: let

V = Γ(X,OX(Θ))⊕ Γ(X,OX(Θ))

and associate to each pair (ϑ1, ϑ2) ∈ V , with nonzero components, the
monad with differential given by ϑ+

i = T ∗±ai(ϑ1). Then it is easy to
verify that every monad (16) is isomorphic to one associated to a pair
(ϑ1, ϑ2), and a second pair (ϑ′1, ϑ

′
2) gives an isomorphic monad if and

only if there is a λ ∈ Gm such that

(ϑ′1, ϑ
′
2) = (λϑ1, λϑ2) or (ϑ′1, ϑ

′
2) = (λϑ1,−λϑ2).

Thus, for fixed ai’s, the monads (16) are parametrized one-to-one by
the quotient of

P1 \ {0,∞} ⊂ P1 = P(V ∨)

by the involution (u : v) 7→ (u : −v). The quotient of P1 by this
involution is again a P1. Order the ai’s temporarily as (±a1,±a2) ∈
K×K. Then it follows that monads (16) are parametrized in a two-to-
one fashion by an open subset in P1×K×K. Exchanging ±a1 ↔ ±a2

and ϑ1 ↔ ϑ2 corresponds to the involution exchanging the two factors
of K × K and acting by (u : v) 7→ (v : u) in P1. The quotient of
the trivial P1-bundle P1 ×K ×K by this involution gives the required
P1-bundle P → H over an open subset of the Hilbert scheme.

By construction, an open subset U ⊂ P parametrizes decomposable
monads — it is straight forward to see that there is a “universal”
monad on U ×X, whose fibres over closed points in U are in bijective
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correspondence with monads (16). The cohomology of the universal
monad is a family of vector bundles, and we may shrink U if necessary
to ensure that it is a family of stable vector bundles. It defines a
rational map

(17) P 99KM(0,Θ2).

Now let (b, b′) ∈ X × X act on monads by translation T ∗b (−) and
twist Pb′ ⊗−. Apply this to (16): the result is a monad of the form

(18) Pb′−b(−Θ) -
⊕2

i=1(Pai+b ⊕P−ai+b)
- Pb′+b(Θ).

Since we can read off (b, b′) from the isomorphism class of this monad,
we conlude that X ×X acts freely on monads of this form. Moreover,
for any two monads M •

1 and M •
2 of the form (18), with cohomology

vector bundles E1 and E2, the first hyperext spectral sequence gives an
isomorphism Hom(M •

1 ,M
•
2)
∼→ Hom(E1,E2) (there are no homotopies,

since E−1,0
1 vanishes). It follows that M •

1 and M •
2 are isomorphic as

complexes if and only if E1 and E2 are isomorphic vector bundles. The
rational map (17) combined with the X ×X-action,

P ×X ×X 99KM(0,Θ2)

is thus generically injective (on closed points). By Theorems 5.6 and
5.7 it is also generically étale, and hence birational. �
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des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. (1961), no. 11,
167.

6. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate
Texts in Mathematics, No. 52.

7. , Stable vector bundles of rank 2 on P3, Math. Ann. 238 (1978), no. 3,
229–280.

8. M. Herrera and D. Lieberman, Duality and the de Rham cohomology of infini-
tesimal neighborhoods, Invent. Math. 13 (1971), 97–124.

9. D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects
of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997.

10. H. Lange and C. Birkenhake, Complex abelian varieties, Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 302, Springer-Verlag, Berlin, 1992.

11. T. Matsusaka, On a characterization of a Jacobian variety, Memo. Coll. Sci.
Univ. Kyoto. Ser. A. Math. 32 (1959), 1–19.



VECTOR BUNDLES AND MONADS ON ABELIAN THREEFOLDS 25

12. H. Morikawa, Cycles and endomorphisms of abelian varieties, Nagoya Math. J.
7 (1954), 95–102.

13. S. Mukai, Semi-homogeneous vector bundles on an Abelian variety, J. Math.
Kyoto Univ. 18 (1978), no. 2, 239–272.

14. , Symplectic structure of the moduli space of sheaves on an abelian or
K3 surface, Invent. Math. 77 (1984), no. 1, 101–116.

15. J.-P. Serre, Sur les modules projectifs, Algèbre et théorie des nombres, Séminaire
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